This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnff | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 0zd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> 0 e. ZZ ) |
|
| 3 | fvconst2g | |- ( ( F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) |
|
| 4 | 3 | adantll | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) |
| 5 | dmexg | |- ( F e. ( CC ^pm S ) -> dom F e. _V ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> dom F e. _V ) |
| 7 | cnex | |- CC e. _V |
|
| 8 | 7 | a1i | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> CC e. _V ) |
| 9 | elpm2g | |- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
|
| 10 | 7 9 | mpan | |- ( S e. { RR , CC } -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 11 | 10 | biimpa | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 12 | 11 | simpld | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> F : dom F --> CC ) |
| 13 | 12 | adantr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F : dom F --> CC ) |
| 14 | fpmg | |- ( ( dom F e. _V /\ CC e. _V /\ F : dom F --> CC ) -> F e. ( CC ^pm dom F ) ) |
|
| 15 | 6 8 13 14 | syl3anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F e. ( CC ^pm dom F ) ) |
| 16 | 4 15 | eqeltrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) e. ( CC ^pm dom F ) ) |
| 17 | vex | |- k e. _V |
|
| 18 | vex | |- n e. _V |
|
| 19 | 17 18 | opco1i | |- ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( ( x e. _V |-> ( S _D x ) ) ` k ) |
| 20 | oveq2 | |- ( x = k -> ( S _D x ) = ( S _D k ) ) |
|
| 21 | eqid | |- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
|
| 22 | ovex | |- ( S _D k ) e. _V |
|
| 23 | 20 21 22 | fvmpt | |- ( k e. _V -> ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) ) |
| 24 | 23 | elv | |- ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) |
| 25 | 19 24 | eqtri | |- ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( S _D k ) |
| 26 | 7 | a1i | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> CC e. _V ) |
| 27 | 5 | ad2antlr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F e. _V ) |
| 28 | dvfg | |- ( S e. { RR , CC } -> ( S _D k ) : dom ( S _D k ) --> CC ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) : dom ( S _D k ) --> CC ) |
| 30 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 31 | 30 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> S C_ CC ) |
| 32 | simprl | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k e. ( CC ^pm dom F ) ) |
|
| 33 | elpm2g | |- ( ( CC e. _V /\ dom F e. _V ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) |
|
| 34 | 7 27 33 | sylancr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) |
| 35 | 32 34 | mpbid | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k : dom k --> CC /\ dom k C_ dom F ) ) |
| 36 | 35 | simpld | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k : dom k --> CC ) |
| 37 | 35 | simprd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ dom F ) |
| 38 | 11 | simprd | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> dom F C_ S ) |
| 39 | 38 | adantr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F C_ S ) |
| 40 | 37 39 | sstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ S ) |
| 41 | 31 36 40 | dvbss | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom k ) |
| 42 | 41 37 | sstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom F ) |
| 43 | elpm2r | |- ( ( ( CC e. _V /\ dom F e. _V ) /\ ( ( S _D k ) : dom ( S _D k ) --> CC /\ dom ( S _D k ) C_ dom F ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) |
|
| 44 | 26 27 29 42 43 | syl22anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) |
| 45 | 25 44 | eqeltrid | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) e. ( CC ^pm dom F ) ) |
| 46 | 1 2 16 45 | seqf | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) |
| 47 | 21 | dvnfval | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 48 | 30 47 | sylan | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 49 | 48 | feq1d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) : NN0 --> ( CC ^pm dom F ) <-> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) ) |
| 50 | 46 49 | mpbird | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |