This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvnfval.1 | |- G = ( x e. _V |-> ( S _D x ) ) |
|
| Assertion | dvnfval | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvnfval.1 | |- G = ( x e. _V |-> ( S _D x ) ) |
|
| 2 | df-dvn | |- Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) |
|
| 3 | 2 | a1i | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) ) |
| 4 | simprl | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> s = S ) |
|
| 5 | 4 | oveq1d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( s _D x ) = ( S _D x ) ) |
| 6 | 5 | mpteq2dv | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = ( x e. _V |-> ( S _D x ) ) ) |
| 7 | 6 1 | eqtr4di | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = G ) |
| 8 | 7 | coeq1d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( ( x e. _V |-> ( s _D x ) ) o. 1st ) = ( G o. 1st ) ) |
| 9 | 8 | seqeq2d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) ) |
| 10 | simprr | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> f = F ) |
|
| 11 | 10 | sneqd | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> { f } = { F } ) |
| 12 | 11 | xpeq2d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( NN0 X. { f } ) = ( NN0 X. { F } ) ) |
| 13 | 12 | seqeq3d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |
| 14 | 9 13 | eqtrd | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |
| 15 | simpr | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> s = S ) |
|
| 16 | 15 | oveq2d | |- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) |
| 17 | simpl | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S C_ CC ) |
|
| 18 | cnex | |- CC e. _V |
|
| 19 | 18 | elpw2 | |- ( S e. ~P CC <-> S C_ CC ) |
| 20 | 17 19 | sylibr | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S e. ~P CC ) |
| 21 | simpr | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> F e. ( CC ^pm S ) ) |
|
| 22 | seqex | |- seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V |
|
| 23 | 22 | a1i | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V ) |
| 24 | 3 14 16 20 21 23 | ovmpodx | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |