This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmss12g | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( A ^pm B ) C_ ( C ^pm D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss12 | |- ( ( B C_ D /\ A C_ C ) -> ( B X. A ) C_ ( D X. C ) ) |
|
| 2 | 1 | ancoms | |- ( ( A C_ C /\ B C_ D ) -> ( B X. A ) C_ ( D X. C ) ) |
| 3 | sstr | |- ( ( f C_ ( B X. A ) /\ ( B X. A ) C_ ( D X. C ) ) -> f C_ ( D X. C ) ) |
|
| 4 | 3 | expcom | |- ( ( B X. A ) C_ ( D X. C ) -> ( f C_ ( B X. A ) -> f C_ ( D X. C ) ) ) |
| 5 | 2 4 | syl | |- ( ( A C_ C /\ B C_ D ) -> ( f C_ ( B X. A ) -> f C_ ( D X. C ) ) ) |
| 6 | 5 | anim2d | |- ( ( A C_ C /\ B C_ D ) -> ( ( Fun f /\ f C_ ( B X. A ) ) -> ( Fun f /\ f C_ ( D X. C ) ) ) ) |
| 7 | 6 | adantr | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( ( Fun f /\ f C_ ( B X. A ) ) -> ( Fun f /\ f C_ ( D X. C ) ) ) ) |
| 8 | ssexg | |- ( ( A C_ C /\ C e. V ) -> A e. _V ) |
|
| 9 | ssexg | |- ( ( B C_ D /\ D e. W ) -> B e. _V ) |
|
| 10 | elpmg | |- ( ( A e. _V /\ B e. _V ) -> ( f e. ( A ^pm B ) <-> ( Fun f /\ f C_ ( B X. A ) ) ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( ( A C_ C /\ C e. V ) /\ ( B C_ D /\ D e. W ) ) -> ( f e. ( A ^pm B ) <-> ( Fun f /\ f C_ ( B X. A ) ) ) ) |
| 12 | 11 | an4s | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( f e. ( A ^pm B ) <-> ( Fun f /\ f C_ ( B X. A ) ) ) ) |
| 13 | elpmg | |- ( ( C e. V /\ D e. W ) -> ( f e. ( C ^pm D ) <-> ( Fun f /\ f C_ ( D X. C ) ) ) ) |
|
| 14 | 13 | adantl | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( f e. ( C ^pm D ) <-> ( Fun f /\ f C_ ( D X. C ) ) ) ) |
| 15 | 7 12 14 | 3imtr4d | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( f e. ( A ^pm B ) -> f e. ( C ^pm D ) ) ) |
| 16 | 15 | ssrdv | |- ( ( ( A C_ C /\ B C_ D ) /\ ( C e. V /\ D e. W ) ) -> ( A ^pm B ) C_ ( C ^pm D ) ) |