This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpmi | |- ( F e. ( A ^pm B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | |- ( F e. ( A ^pm B ) -> -. ( A ^pm B ) = (/) ) |
|
| 2 | fnpm | |- ^pm Fn ( _V X. _V ) |
|
| 3 | 2 | fndmi | |- dom ^pm = ( _V X. _V ) |
| 4 | 3 | ndmov | |- ( -. ( A e. _V /\ B e. _V ) -> ( A ^pm B ) = (/) ) |
| 5 | 1 4 | nsyl2 | |- ( F e. ( A ^pm B ) -> ( A e. _V /\ B e. _V ) ) |
| 6 | elpm2g | |- ( ( A e. _V /\ B e. _V ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
|
| 7 | 5 6 | syl | |- ( F e. ( A ^pm B ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
| 8 | 7 | ibi | |- ( F e. ( A ^pm B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |