This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptcj.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| dvmptcj.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptcj.da | |- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| Assertion | dvmptcj | |- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 2 | dvmptcj.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 3 | dvmptcj.da | |- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 4 | 1 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 5 | 3 | dmeqd | |- ( ph -> dom ( RR _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 6 | 2 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 7 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 8 | 6 7 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 9 | 5 8 | eqtrd | |- ( ph -> dom ( RR _D ( x e. X |-> A ) ) = X ) |
| 10 | dvbsss | |- dom ( RR _D ( x e. X |-> A ) ) C_ RR |
|
| 11 | 9 10 | eqsstrrdi | |- ( ph -> X C_ RR ) |
| 12 | dvcj | |- ( ( ( x e. X |-> A ) : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) |
|
| 13 | 4 11 12 | syl2anc | |- ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) |
| 14 | cjf | |- * : CC --> CC |
|
| 15 | 14 | a1i | |- ( ph -> * : CC --> CC ) |
| 16 | 15 1 | cofmpt | |- ( ph -> ( * o. ( x e. X |-> A ) ) = ( x e. X |-> ( * ` A ) ) ) |
| 17 | 16 | oveq2d | |- ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( RR _D ( x e. X |-> ( * ` A ) ) ) ) |
| 18 | reelprrecn | |- RR e. { RR , CC } |
|
| 19 | 18 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 20 | 19 1 2 3 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 21 | 15 | feqmptd | |- ( ph -> * = ( y e. CC |-> ( * ` y ) ) ) |
| 22 | fveq2 | |- ( y = B -> ( * ` y ) = ( * ` B ) ) |
|
| 23 | 20 3 21 22 | fmptco | |- ( ph -> ( * o. ( RR _D ( x e. X |-> A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
| 24 | 13 17 23 | 3eqtr3d | |- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |