This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptcj.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| dvmptcj.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptcj.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| Assertion | dvmptcj | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 2 | dvmptcj.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | dvmptcj.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 4 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 5 | 3 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 6 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 7 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 10 | dvbsss | ⊢ dom ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ ℝ | |
| 11 | 9 10 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 12 | dvcj | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) | |
| 13 | 4 11 12 | syl2anc | ⊢ ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) |
| 14 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ∗ : ℂ ⟶ ℂ ) |
| 16 | 15 1 | cofmpt | ⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( ∗ ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) ) |
| 18 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 20 | 19 1 2 3 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 21 | 15 | feqmptd | ⊢ ( 𝜑 → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ 𝐵 ) ) | |
| 23 | 20 3 21 22 | fmptco | ⊢ ( 𝜑 → ( ∗ ∘ ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |
| 24 | 13 17 23 | 3eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |