This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds1lem.1 | |- ( ph -> ( J e. ZZ /\ K e. ZZ ) ) |
|
| dvds1lem.2 | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
||
| dvds1lem.3 | |- ( ( ph /\ x e. ZZ ) -> Z e. ZZ ) |
||
| dvds1lem.4 | |- ( ( ph /\ x e. ZZ ) -> ( ( x x. J ) = K -> ( Z x. M ) = N ) ) |
||
| Assertion | dvds1lem | |- ( ph -> ( J || K -> M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds1lem.1 | |- ( ph -> ( J e. ZZ /\ K e. ZZ ) ) |
|
| 2 | dvds1lem.2 | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 3 | dvds1lem.3 | |- ( ( ph /\ x e. ZZ ) -> Z e. ZZ ) |
|
| 4 | dvds1lem.4 | |- ( ( ph /\ x e. ZZ ) -> ( ( x x. J ) = K -> ( Z x. M ) = N ) ) |
|
| 5 | oveq1 | |- ( z = Z -> ( z x. M ) = ( Z x. M ) ) |
|
| 6 | 5 | eqeq1d | |- ( z = Z -> ( ( z x. M ) = N <-> ( Z x. M ) = N ) ) |
| 7 | 6 | rspcev | |- ( ( Z e. ZZ /\ ( Z x. M ) = N ) -> E. z e. ZZ ( z x. M ) = N ) |
| 8 | 3 4 7 | syl6an | |- ( ( ph /\ x e. ZZ ) -> ( ( x x. J ) = K -> E. z e. ZZ ( z x. M ) = N ) ) |
| 9 | 8 | rexlimdva | |- ( ph -> ( E. x e. ZZ ( x x. J ) = K -> E. z e. ZZ ( z x. M ) = N ) ) |
| 10 | divides | |- ( ( J e. ZZ /\ K e. ZZ ) -> ( J || K <-> E. x e. ZZ ( x x. J ) = K ) ) |
|
| 11 | 1 10 | syl | |- ( ph -> ( J || K <-> E. x e. ZZ ( x x. J ) = K ) ) |
| 12 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
|
| 13 | 2 12 | syl | |- ( ph -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
| 14 | 9 11 13 | 3imtr4d | |- ( ph -> ( J || K -> M || N ) ) |