This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptdiv.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptdiv.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptdiv.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptdiv.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptdiv.c | |- ( ( ph /\ x e. X ) -> C e. ( CC \ { 0 } ) ) |
||
| dvmptdiv.d | |- ( ( ph /\ x e. X ) -> D e. CC ) |
||
| dvmptdiv.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
||
| Assertion | dvmptdiv | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptdiv.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptdiv.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptdiv.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptdiv.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptdiv.c | |- ( ( ph /\ x e. X ) -> C e. ( CC \ { 0 } ) ) |
|
| 6 | dvmptdiv.d | |- ( ( ph /\ x e. X ) -> D e. CC ) |
|
| 7 | dvmptdiv.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
|
| 8 | 5 | eldifad | |- ( ( ph /\ x e. X ) -> C e. CC ) |
| 9 | eldifsn | |- ( C e. ( CC \ { 0 } ) <-> ( C e. CC /\ C =/= 0 ) ) |
|
| 10 | 5 9 | sylib | |- ( ( ph /\ x e. X ) -> ( C e. CC /\ C =/= 0 ) ) |
| 11 | 10 | simprd | |- ( ( ph /\ x e. X ) -> C =/= 0 ) |
| 12 | 2 8 11 | divrecd | |- ( ( ph /\ x e. X ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
| 13 | 12 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( A x. ( 1 / C ) ) ) ) |
| 14 | 13 | oveq2d | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( S _D ( x e. X |-> ( A x. ( 1 / C ) ) ) ) ) |
| 15 | 8 11 | reccld | |- ( ( ph /\ x e. X ) -> ( 1 / C ) e. CC ) |
| 16 | 1cnd | |- ( ( ph /\ x e. X ) -> 1 e. CC ) |
|
| 17 | 16 6 | mulcld | |- ( ( ph /\ x e. X ) -> ( 1 x. D ) e. CC ) |
| 18 | 8 | sqcld | |- ( ( ph /\ x e. X ) -> ( C ^ 2 ) e. CC ) |
| 19 | 11 | neneqd | |- ( ( ph /\ x e. X ) -> -. C = 0 ) |
| 20 | sqeq0 | |- ( C e. CC -> ( ( C ^ 2 ) = 0 <-> C = 0 ) ) |
|
| 21 | 8 20 | syl | |- ( ( ph /\ x e. X ) -> ( ( C ^ 2 ) = 0 <-> C = 0 ) ) |
| 22 | 19 21 | mtbird | |- ( ( ph /\ x e. X ) -> -. ( C ^ 2 ) = 0 ) |
| 23 | 22 | neqned | |- ( ( ph /\ x e. X ) -> ( C ^ 2 ) =/= 0 ) |
| 24 | 17 18 23 | divcld | |- ( ( ph /\ x e. X ) -> ( ( 1 x. D ) / ( C ^ 2 ) ) e. CC ) |
| 25 | 24 | negcld | |- ( ( ph /\ x e. X ) -> -u ( ( 1 x. D ) / ( C ^ 2 ) ) e. CC ) |
| 26 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 27 | 1 26 5 6 7 | dvrecg | |- ( ph -> ( S _D ( x e. X |-> ( 1 / C ) ) ) = ( x e. X |-> -u ( ( 1 x. D ) / ( C ^ 2 ) ) ) ) |
| 28 | 1 2 3 4 15 25 27 | dvmptmul | |- ( ph -> ( S _D ( x e. X |-> ( A x. ( 1 / C ) ) ) ) = ( x e. X |-> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) ) ) |
| 29 | 1 2 3 4 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 30 | 29 8 | mulcld | |- ( ( ph /\ x e. X ) -> ( B x. C ) e. CC ) |
| 31 | 30 18 23 | divcld | |- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C ^ 2 ) ) e. CC ) |
| 32 | 6 2 | mulcld | |- ( ( ph /\ x e. X ) -> ( D x. A ) e. CC ) |
| 33 | 32 18 23 | divcld | |- ( ( ph /\ x e. X ) -> ( ( D x. A ) / ( C ^ 2 ) ) e. CC ) |
| 34 | 31 33 | negsubd | |- ( ( ph /\ x e. X ) -> ( ( ( B x. C ) / ( C ^ 2 ) ) + -u ( ( D x. A ) / ( C ^ 2 ) ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) - ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
| 35 | 29 16 8 11 | div12d | |- ( ( ph /\ x e. X ) -> ( B x. ( 1 / C ) ) = ( 1 x. ( B / C ) ) ) |
| 36 | 29 8 11 | divcld | |- ( ( ph /\ x e. X ) -> ( B / C ) e. CC ) |
| 37 | 36 | mullidd | |- ( ( ph /\ x e. X ) -> ( 1 x. ( B / C ) ) = ( B / C ) ) |
| 38 | 8 | sqvald | |- ( ( ph /\ x e. X ) -> ( C ^ 2 ) = ( C x. C ) ) |
| 39 | 38 | oveq2d | |- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C ^ 2 ) ) = ( ( B x. C ) / ( C x. C ) ) ) |
| 40 | 29 8 8 11 11 | divcan5rd | |- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C x. C ) ) = ( B / C ) ) |
| 41 | 39 40 | eqtr2d | |- ( ( ph /\ x e. X ) -> ( B / C ) = ( ( B x. C ) / ( C ^ 2 ) ) ) |
| 42 | 35 37 41 | 3eqtrd | |- ( ( ph /\ x e. X ) -> ( B x. ( 1 / C ) ) = ( ( B x. C ) / ( C ^ 2 ) ) ) |
| 43 | 6 | mullidd | |- ( ( ph /\ x e. X ) -> ( 1 x. D ) = D ) |
| 44 | 43 | oveq1d | |- ( ( ph /\ x e. X ) -> ( ( 1 x. D ) / ( C ^ 2 ) ) = ( D / ( C ^ 2 ) ) ) |
| 45 | 44 | negeqd | |- ( ( ph /\ x e. X ) -> -u ( ( 1 x. D ) / ( C ^ 2 ) ) = -u ( D / ( C ^ 2 ) ) ) |
| 46 | 45 | oveq1d | |- ( ( ph /\ x e. X ) -> ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) = ( -u ( D / ( C ^ 2 ) ) x. A ) ) |
| 47 | 6 18 23 | divcld | |- ( ( ph /\ x e. X ) -> ( D / ( C ^ 2 ) ) e. CC ) |
| 48 | 47 2 | mulneg1d | |- ( ( ph /\ x e. X ) -> ( -u ( D / ( C ^ 2 ) ) x. A ) = -u ( ( D / ( C ^ 2 ) ) x. A ) ) |
| 49 | 6 2 18 23 | div23d | |- ( ( ph /\ x e. X ) -> ( ( D x. A ) / ( C ^ 2 ) ) = ( ( D / ( C ^ 2 ) ) x. A ) ) |
| 50 | 49 | eqcomd | |- ( ( ph /\ x e. X ) -> ( ( D / ( C ^ 2 ) ) x. A ) = ( ( D x. A ) / ( C ^ 2 ) ) ) |
| 51 | 50 | negeqd | |- ( ( ph /\ x e. X ) -> -u ( ( D / ( C ^ 2 ) ) x. A ) = -u ( ( D x. A ) / ( C ^ 2 ) ) ) |
| 52 | 46 48 51 | 3eqtrd | |- ( ( ph /\ x e. X ) -> ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) = -u ( ( D x. A ) / ( C ^ 2 ) ) ) |
| 53 | 42 52 | oveq12d | |- ( ( ph /\ x e. X ) -> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) + -u ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
| 54 | 30 32 18 23 | divsubdird | |- ( ( ph /\ x e. X ) -> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) - ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
| 55 | 34 53 54 | 3eqtr4d | |- ( ( ph /\ x e. X ) -> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) = ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) |
| 56 | 55 | mpteq2dva | |- ( ph -> ( x e. X |-> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) ) = ( x e. X |-> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) ) |
| 57 | 14 28 56 | 3eqtrd | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) ) |