This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvsubcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvsubcncf.f | |- ( ph -> F : X --> CC ) |
||
| dvsubcncf.g | |- ( ph -> G : X --> CC ) |
||
| dvsubcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
||
| dvsubcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
||
| Assertion | dvsubcncf | |- ( ph -> ( S _D ( F oF - G ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsubcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvsubcncf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvsubcncf.g | |- ( ph -> G : X --> CC ) |
|
| 4 | dvsubcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
|
| 5 | dvsubcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
|
| 6 | cncff | |- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
|
| 7 | fdm | |- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
|
| 8 | 4 6 7 | 3syl | |- ( ph -> dom ( S _D F ) = X ) |
| 9 | cncff | |- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
|
| 10 | fdm | |- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
|
| 11 | 5 9 10 | 3syl | |- ( ph -> dom ( S _D G ) = X ) |
| 12 | 1 2 3 8 11 | dvsubf | |- ( ph -> ( S _D ( F oF - G ) ) = ( ( S _D F ) oF - ( S _D G ) ) ) |
| 13 | 4 5 | subcncff | |- ( ph -> ( ( S _D F ) oF - ( S _D G ) ) e. ( X -cn-> CC ) ) |
| 14 | 12 13 | eqeltrd | |- ( ph -> ( S _D ( F oF - G ) ) e. ( X -cn-> CC ) ) |