This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmul1d.1 | |- ( ph -> A e. RR ) |
|
| ltmul1d.2 | |- ( ph -> B e. RR ) |
||
| ltmul1d.3 | |- ( ph -> C e. RR+ ) |
||
| lediv12ad.4 | |- ( ph -> D e. RR ) |
||
| lediv12ad.5 | |- ( ph -> 0 <_ A ) |
||
| lediv12ad.6 | |- ( ph -> A <_ B ) |
||
| lediv12ad.7 | |- ( ph -> C <_ D ) |
||
| Assertion | lediv12ad | |- ( ph -> ( A / D ) <_ ( B / C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltmul1d.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltmul1d.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | lediv12ad.4 | |- ( ph -> D e. RR ) |
|
| 5 | lediv12ad.5 | |- ( ph -> 0 <_ A ) |
|
| 6 | lediv12ad.6 | |- ( ph -> A <_ B ) |
|
| 7 | lediv12ad.7 | |- ( ph -> C <_ D ) |
|
| 8 | 1 2 | jca | |- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 9 | 5 6 | jca | |- ( ph -> ( 0 <_ A /\ A <_ B ) ) |
| 10 | 3 | rpred | |- ( ph -> C e. RR ) |
| 11 | 10 4 | jca | |- ( ph -> ( C e. RR /\ D e. RR ) ) |
| 12 | 3 | rpgt0d | |- ( ph -> 0 < C ) |
| 13 | 12 7 | jca | |- ( ph -> ( 0 < C /\ C <_ D ) ) |
| 14 | lediv12a | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 < C /\ C <_ D ) ) ) -> ( A / D ) <_ ( B / C ) ) |
|
| 15 | 8 9 11 13 14 | syl22anc | |- ( ph -> ( A / D ) <_ ( B / C ) ) |