This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcmpt2.a | |- ( ph -> A C_ CC ) |
|
| limcmpt2.b | |- ( ph -> B e. A ) |
||
| limcmpt2.f | |- ( ( ph /\ ( z e. A /\ z =/= B ) ) -> D e. CC ) |
||
| limcmpt2.j | |- J = ( K |`t A ) |
||
| limcmpt2.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | limcmpt2 | |- ( ph -> ( C e. ( ( z e. ( A \ { B } ) |-> D ) limCC B ) <-> ( z e. A |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt2.a | |- ( ph -> A C_ CC ) |
|
| 2 | limcmpt2.b | |- ( ph -> B e. A ) |
|
| 3 | limcmpt2.f | |- ( ( ph /\ ( z e. A /\ z =/= B ) ) -> D e. CC ) |
|
| 4 | limcmpt2.j | |- J = ( K |`t A ) |
|
| 5 | limcmpt2.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | 1 | ssdifssd | |- ( ph -> ( A \ { B } ) C_ CC ) |
| 7 | 1 2 | sseldd | |- ( ph -> B e. CC ) |
| 8 | eldifsn | |- ( z e. ( A \ { B } ) <-> ( z e. A /\ z =/= B ) ) |
|
| 9 | 8 3 | sylan2b | |- ( ( ph /\ z e. ( A \ { B } ) ) -> D e. CC ) |
| 10 | eqid | |- ( K |`t ( ( A \ { B } ) u. { B } ) ) = ( K |`t ( ( A \ { B } ) u. { B } ) ) |
|
| 11 | 6 7 9 10 5 | limcmpt | |- ( ph -> ( C e. ( ( z e. ( A \ { B } ) |-> D ) limCC B ) <-> ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , C , D ) ) e. ( ( ( K |`t ( ( A \ { B } ) u. { B } ) ) CnP K ) ` B ) ) ) |
| 12 | undif1 | |- ( ( A \ { B } ) u. { B } ) = ( A u. { B } ) |
|
| 13 | 2 | snssd | |- ( ph -> { B } C_ A ) |
| 14 | ssequn2 | |- ( { B } C_ A <-> ( A u. { B } ) = A ) |
|
| 15 | 13 14 | sylib | |- ( ph -> ( A u. { B } ) = A ) |
| 16 | 12 15 | eqtrid | |- ( ph -> ( ( A \ { B } ) u. { B } ) = A ) |
| 17 | 16 | mpteq1d | |- ( ph -> ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , C , D ) ) = ( z e. A |-> if ( z = B , C , D ) ) ) |
| 18 | 16 | oveq2d | |- ( ph -> ( K |`t ( ( A \ { B } ) u. { B } ) ) = ( K |`t A ) ) |
| 19 | 18 4 | eqtr4di | |- ( ph -> ( K |`t ( ( A \ { B } ) u. { B } ) ) = J ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( K |`t ( ( A \ { B } ) u. { B } ) ) CnP K ) = ( J CnP K ) ) |
| 21 | 20 | fveq1d | |- ( ph -> ( ( ( K |`t ( ( A \ { B } ) u. { B } ) ) CnP K ) ` B ) = ( ( J CnP K ) ` B ) ) |
| 22 | 17 21 | eleq12d | |- ( ph -> ( ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , C , D ) ) e. ( ( ( K |`t ( ( A \ { B } ) u. { B } ) ) CnP K ) ` B ) <-> ( z e. A |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |
| 23 | 11 22 | bitrd | |- ( ph -> ( C e. ( ( z e. ( A \ { B } ) |-> D ) limCC B ) <-> ( z e. A |-> if ( z = B , C , D ) ) e. ( ( J CnP K ) ` B ) ) ) |