This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element Z is the identity element of a group. (Contributed by NM, 7-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | |- B = ( Base ` G ) |
|
| grpinveu.p | |- .+ = ( +g ` G ) |
||
| grpinveu.o | |- .0. = ( 0g ` G ) |
||
| Assertion | isgrpid2 | |- ( G e. Grp -> ( ( Z e. B /\ ( Z .+ Z ) = Z ) <-> .0. = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | |- B = ( Base ` G ) |
|
| 2 | grpinveu.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinveu.o | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | grpid | |- ( ( G e. Grp /\ Z e. B ) -> ( ( Z .+ Z ) = Z <-> .0. = Z ) ) |
| 5 | 4 | biimpd | |- ( ( G e. Grp /\ Z e. B ) -> ( ( Z .+ Z ) = Z -> .0. = Z ) ) |
| 6 | 5 | expimpd | |- ( G e. Grp -> ( ( Z e. B /\ ( Z .+ Z ) = Z ) -> .0. = Z ) ) |
| 7 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 8 | 1 2 3 | grplid | |- ( ( G e. Grp /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
| 9 | 7 8 | mpdan | |- ( G e. Grp -> ( .0. .+ .0. ) = .0. ) |
| 10 | 7 9 | jca | |- ( G e. Grp -> ( .0. e. B /\ ( .0. .+ .0. ) = .0. ) ) |
| 11 | eleq1 | |- ( .0. = Z -> ( .0. e. B <-> Z e. B ) ) |
|
| 12 | id | |- ( .0. = Z -> .0. = Z ) |
|
| 13 | 12 12 | oveq12d | |- ( .0. = Z -> ( .0. .+ .0. ) = ( Z .+ Z ) ) |
| 14 | 13 12 | eqeq12d | |- ( .0. = Z -> ( ( .0. .+ .0. ) = .0. <-> ( Z .+ Z ) = Z ) ) |
| 15 | 11 14 | anbi12d | |- ( .0. = Z -> ( ( .0. e. B /\ ( .0. .+ .0. ) = .0. ) <-> ( Z e. B /\ ( Z .+ Z ) = Z ) ) ) |
| 16 | 10 15 | syl5ibcom | |- ( G e. Grp -> ( .0. = Z -> ( Z e. B /\ ( Z .+ Z ) = Z ) ) ) |
| 17 | 6 16 | impbid | |- ( G e. Grp -> ( ( Z e. B /\ ( Z .+ Z ) = Z ) <-> .0. = Z ) ) |