This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring's unity is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngid.b | |- B = ( Base ` R ) |
|
| drngid.z | |- .0. = ( 0g ` R ) |
||
| drngid.u | |- .1. = ( 1r ` R ) |
||
| drngid.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
||
| Assertion | drngid | |- ( R e. DivRing -> .1. = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngid.b | |- B = ( Base ` R ) |
|
| 2 | drngid.z | |- .0. = ( 0g ` R ) |
|
| 3 | drngid.u | |- .1. = ( 1r ` R ) |
|
| 4 | drngid.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 5 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 6 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 7 | eqid | |- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
|
| 8 | 6 7 3 | unitgrpid | |- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
| 9 | 5 8 | syl | |- ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
| 10 | 1 6 2 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
| 11 | 10 | simprbi | |- ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) |
| 12 | 11 | oveq2d | |- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 13 | 12 4 | eqtr4di | |- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
| 14 | 13 | fveq2d | |- ( R e. DivRing -> ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) = ( 0g ` G ) ) |
| 15 | 9 14 | eqtrd | |- ( R e. DivRing -> .1. = ( 0g ` G ) ) |