This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011) (Proof shortened by SN, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmcl.b | |- B = ( Base ` R ) |
|
| drngmcl.t | |- .x. = ( .r ` R ) |
||
| drngmcl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | drngmcl | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmcl.b | |- B = ( Base ` R ) |
|
| 2 | drngmcl.t | |- .x. = ( .r ` R ) |
|
| 3 | drngmcl.z | |- .0. = ( 0g ` R ) |
|
| 4 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 5 | eldifi | |- ( X e. ( B \ { .0. } ) -> X e. B ) |
|
| 6 | eldifi | |- ( Y e. ( B \ { .0. } ) -> Y e. B ) |
|
| 7 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 8 | 4 5 6 7 | syl3an | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. B ) |
| 9 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
| 10 | eldifsn | |- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
|
| 11 | 10 | biimpi | |- ( X e. ( B \ { .0. } ) -> ( X e. B /\ X =/= .0. ) ) |
| 12 | eldifsn | |- ( Y e. ( B \ { .0. } ) <-> ( Y e. B /\ Y =/= .0. ) ) |
|
| 13 | 12 | biimpi | |- ( Y e. ( B \ { .0. } ) -> ( Y e. B /\ Y =/= .0. ) ) |
| 14 | 1 2 3 | domnmuln0 | |- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |
| 15 | 9 11 13 14 | syl3an | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) =/= .0. ) |
| 16 | 8 15 | eldifsnd | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |