This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of disjenex . If F is an injection from A to B then there is a right inverse g of F from B to a superset of A . (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssex2 | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> E. g ( g : B -1-1-> _V /\ ( g o. F ) = ( _I |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | fex2 | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F e. _V ) |
| 4 | f1stres | |- ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) --> ( B \ ran F ) |
|
| 5 | difexg | |- ( B e. W -> ( B \ ran F ) e. _V ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( B \ ran F ) e. _V ) |
| 7 | snex | |- { ~P U. ran A } e. _V |
|
| 8 | xpexg | |- ( ( ( B \ ran F ) e. _V /\ { ~P U. ran A } e. _V ) -> ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V ) |
| 10 | fex2 | |- ( ( ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) --> ( B \ ran F ) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V /\ ( B \ ran F ) e. _V ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) |
|
| 11 | 4 9 6 10 | mp3an2i | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) |
| 12 | unexg | |- ( ( F e. _V /\ ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
|
| 13 | 3 11 12 | syl2anc | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
| 14 | cnvexg | |- ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
|
| 15 | 13 14 | syl | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
| 16 | eqid | |- `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
|
| 17 | 16 | domss2 | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
| 18 | 17 | simp1d | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
| 19 | f1of1 | |- ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
| 21 | ssv | |- ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) C_ _V |
|
| 22 | f1ss | |- ( ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) C_ _V ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) |
|
| 23 | 20 21 22 | sylancl | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) |
| 24 | 17 | simp3d | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) |
| 25 | 23 24 | jca | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
| 26 | f1eq1 | |- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( g : B -1-1-> _V <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) ) |
|
| 27 | coeq1 | |- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( g o. F ) = ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) ) |
|
| 28 | 27 | eqeq1d | |- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( ( g o. F ) = ( _I |` A ) <-> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
| 29 | 26 28 | anbi12d | |- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( ( g : B -1-1-> _V /\ ( g o. F ) = ( _I |` A ) ) <-> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) ) |
| 30 | 15 25 29 | spcedv | |- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> E. g ( g : B -1-1-> _V /\ ( g o. F ) = ( _I |` A ) ) ) |