This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence version of disjen . (Contributed by Mario Carneiro, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjenex | |- ( ( A e. V /\ B e. W ) -> E. x ( ( A i^i x ) = (/) /\ x ~~ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
| 2 | snex | |- { ~P U. ran A } e. _V |
|
| 3 | xpexg | |- ( ( B e. W /\ { ~P U. ran A } e. _V ) -> ( B X. { ~P U. ran A } ) e. _V ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( A e. V /\ B e. W ) -> ( B X. { ~P U. ran A } ) e. _V ) |
| 5 | disjen | |- ( ( A e. V /\ B e. W ) -> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) |
|
| 6 | ineq2 | |- ( x = ( B X. { ~P U. ran A } ) -> ( A i^i x ) = ( A i^i ( B X. { ~P U. ran A } ) ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = ( B X. { ~P U. ran A } ) -> ( ( A i^i x ) = (/) <-> ( A i^i ( B X. { ~P U. ran A } ) ) = (/) ) ) |
| 8 | breq1 | |- ( x = ( B X. { ~P U. ran A } ) -> ( x ~~ B <-> ( B X. { ~P U. ran A } ) ~~ B ) ) |
|
| 9 | 7 8 | anbi12d | |- ( x = ( B X. { ~P U. ran A } ) -> ( ( ( A i^i x ) = (/) /\ x ~~ B ) <-> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) ) |
| 10 | 4 5 9 | spcedv | |- ( ( A e. V /\ B e. W ) -> E. x ( ( A i^i x ) = (/) /\ x ~~ B ) ) |