This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weakening of domssex2 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssex | |- ( A ~<_ B -> E. x ( A C_ x /\ B ~~ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( A ~<_ B -> E. f f : A -1-1-> B ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 4 | vex | |- f e. _V |
|
| 5 | f1stres | |- ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) : ( ( B \ ran f ) X. { ~P U. ran A } ) --> ( B \ ran f ) |
|
| 6 | difexg | |- ( B e. _V -> ( B \ ran f ) e. _V ) |
|
| 7 | 6 | adantl | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( B \ ran f ) e. _V ) |
| 8 | snex | |- { ~P U. ran A } e. _V |
|
| 9 | xpexg | |- ( ( ( B \ ran f ) e. _V /\ { ~P U. ran A } e. _V ) -> ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V ) |
| 11 | fex2 | |- ( ( ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) : ( ( B \ ran f ) X. { ~P U. ran A } ) --> ( B \ ran f ) /\ ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V /\ ( B \ ran f ) e. _V ) -> ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) |
|
| 12 | 5 10 7 11 | mp3an2i | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) |
| 13 | unexg | |- ( ( f e. _V /\ ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) -> ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
|
| 14 | 4 12 13 | sylancr | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
| 15 | cnvexg | |- ( ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
|
| 16 | 14 15 | syl | |- ( ( f : A -1-1-> B /\ B e. _V ) -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
| 17 | rnexg | |- ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V -> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
|
| 18 | 16 17 | syl | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
| 19 | simpl | |- ( ( f : A -1-1-> B /\ B e. _V ) -> f : A -1-1-> B ) |
|
| 20 | f1dm | |- ( f : A -1-1-> B -> dom f = A ) |
|
| 21 | 4 | dmex | |- dom f e. _V |
| 22 | 20 21 | eqeltrrdi | |- ( f : A -1-1-> B -> A e. _V ) |
| 23 | 22 | adantr | |- ( ( f : A -1-1-> B /\ B e. _V ) -> A e. _V ) |
| 24 | simpr | |- ( ( f : A -1-1-> B /\ B e. _V ) -> B e. _V ) |
|
| 25 | eqid | |- `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) = `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) |
|
| 26 | 25 | domss2 | |- ( ( f : A -1-1-> B /\ A e. _V /\ B e. _V ) -> ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) o. f ) = ( _I |` A ) ) ) |
| 27 | 19 23 24 26 | syl3anc | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) o. f ) = ( _I |` A ) ) ) |
| 28 | 27 | simp2d | |- ( ( f : A -1-1-> B /\ B e. _V ) -> A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
| 29 | 27 | simp1d | |- ( ( f : A -1-1-> B /\ B e. _V ) -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
| 30 | f1oen3g | |- ( ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V /\ `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) -> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
|
| 31 | 16 29 30 | syl2anc | |- ( ( f : A -1-1-> B /\ B e. _V ) -> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
| 32 | 28 31 | jca | |- ( ( f : A -1-1-> B /\ B e. _V ) -> ( A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
| 33 | sseq2 | |- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( A C_ x <-> A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
|
| 34 | breq2 | |- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( B ~~ x <-> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
|
| 35 | 33 34 | anbi12d | |- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( ( A C_ x /\ B ~~ x ) <-> ( A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) ) |
| 36 | 18 32 35 | spcedv | |- ( ( f : A -1-1-> B /\ B e. _V ) -> E. x ( A C_ x /\ B ~~ x ) ) |
| 37 | 36 | ex | |- ( f : A -1-1-> B -> ( B e. _V -> E. x ( A C_ x /\ B ~~ x ) ) ) |
| 38 | 37 | exlimiv | |- ( E. f f : A -1-1-> B -> ( B e. _V -> E. x ( A C_ x /\ B ~~ x ) ) ) |
| 39 | 1 3 38 | sylc | |- ( A ~<_ B -> E. x ( A C_ x /\ B ~~ x ) ) |