This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrnzr | |- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 2 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 3 | 1 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 4 | 3 | baib | |- ( R e. Ring -> ( R e. NzRing <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 5 | 1z | |- 1 e. ZZ |
|
| 6 | eqid | |- ( chr ` R ) = ( chr ` R ) |
|
| 7 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 8 | 6 7 2 | chrdvds | |- ( ( R e. Ring /\ 1 e. ZZ ) -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) ) |
| 9 | 5 8 | mpan2 | |- ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) ) |
| 10 | 6 | chrcl | |- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
| 11 | dvds1 | |- ( ( chr ` R ) e. NN0 -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) ) |
|
| 12 | 10 11 | syl | |- ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) ) |
| 13 | 7 1 | zrh1 | |- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 14 | 13 | eqeq1d | |- ( R e. Ring -> ( ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 15 | 9 12 14 | 3bitr3d | |- ( R e. Ring -> ( ( chr ` R ) = 1 <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 16 | 15 | necon3bid | |- ( R e. Ring -> ( ( chr ` R ) =/= 1 <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 17 | 4 16 | bitr4d | |- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |