This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on B ). (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsnopss | |- dom { <. A , B >. } C_ { A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg | |- ( B e. _V -> dom { <. A , B >. } = { A } ) |
|
| 2 | eqimss | |- ( dom { <. A , B >. } = { A } -> dom { <. A , B >. } C_ { A } ) |
|
| 3 | 1 2 | syl | |- ( B e. _V -> dom { <. A , B >. } C_ { A } ) |
| 4 | opprc2 | |- ( -. B e. _V -> <. A , B >. = (/) ) |
|
| 5 | 4 | sneqd | |- ( -. B e. _V -> { <. A , B >. } = { (/) } ) |
| 6 | 5 | dmeqd | |- ( -. B e. _V -> dom { <. A , B >. } = dom { (/) } ) |
| 7 | dmsn0 | |- dom { (/) } = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( -. B e. _V -> dom { <. A , B >. } = (/) ) |
| 9 | 0ss | |- (/) C_ { A } |
|
| 10 | 8 9 | eqsstrdi | |- ( -. B e. _V -> dom { <. A , B >. } C_ { A } ) |
| 11 | 3 10 | pm2.61i | |- dom { <. A , B >. } C_ { A } |