This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsnopg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ||
| 2 | vex | ||
| 3 | 1 2 | opth1 | |
| 4 | 3 | exlimiv | |
| 5 | opeq1 | ||
| 6 | opeq2 | ||
| 7 | 6 | eqeq1d | |
| 8 | 7 | spcegv | |
| 9 | 5 8 | syl5 | |
| 10 | 4 9 | impbid2 | |
| 11 | 1 | eldm2 | |
| 12 | opex | ||
| 13 | 12 | elsn | |
| 14 | 13 | exbii | |
| 15 | 11 14 | bitri | |
| 16 | velsn | ||
| 17 | 10 15 16 | 3bitr4g | |
| 18 | 17 | eqrdv |