This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subdivcomb1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( A - ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 2 | simp1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
| 3 | 1 2 | mulcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
| 4 | divsubdir | |- ( ( ( C x. A ) e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( ( ( C x. A ) / C ) - ( B / C ) ) ) |
|
| 5 | 3 4 | syld3an1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( ( ( C x. A ) / C ) - ( B / C ) ) ) |
| 6 | divcan3 | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( C x. A ) / C ) = A ) |
|
| 7 | 6 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / C ) = A ) |
| 8 | 7 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / C ) = A ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) / C ) - ( B / C ) ) = ( A - ( B / C ) ) ) |
| 10 | 5 9 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( A - ( B / C ) ) ) |