This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qnumgt0 | |- ( A e. QQ -> ( 0 < A <-> 0 < ( numer ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( A e. QQ -> 0 e. RR ) |
|
| 2 | qre | |- ( A e. QQ -> A e. RR ) |
|
| 3 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 4 | 3 | nnred | |- ( A e. QQ -> ( denom ` A ) e. RR ) |
| 5 | 3 | nngt0d | |- ( A e. QQ -> 0 < ( denom ` A ) ) |
| 6 | ltmul1 | |- ( ( 0 e. RR /\ A e. RR /\ ( ( denom ` A ) e. RR /\ 0 < ( denom ` A ) ) ) -> ( 0 < A <-> ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) ) ) |
|
| 7 | 1 2 4 5 6 | syl112anc | |- ( A e. QQ -> ( 0 < A <-> ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) ) ) |
| 8 | 3 | nncnd | |- ( A e. QQ -> ( denom ` A ) e. CC ) |
| 9 | 8 | mul02d | |- ( A e. QQ -> ( 0 x. ( denom ` A ) ) = 0 ) |
| 10 | qmuldeneqnum | |- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |
|
| 11 | 9 10 | breq12d | |- ( A e. QQ -> ( ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) <-> 0 < ( numer ` A ) ) ) |
| 12 | 7 11 | bitrd | |- ( A e. QQ -> ( 0 < A <-> 0 < ( numer ` A ) ) ) |