This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995) (Revised by David Abernethy, 4-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecovdi.1 | |- D = ( ( S X. S ) /. .~ ) |
|
| ecovdi.2 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. M , N >. ] .~ ) |
||
| ecovdi.3 | |- ( ( ( x e. S /\ y e. S ) /\ ( M e. S /\ N e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. M , N >. ] .~ ) = [ <. H , J >. ] .~ ) |
||
| ecovdi.4 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) = [ <. W , X >. ] .~ ) |
||
| ecovdi.5 | |- ( ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) = [ <. Y , Z >. ] .~ ) |
||
| ecovdi.6 | |- ( ( ( W e. S /\ X e. S ) /\ ( Y e. S /\ Z e. S ) ) -> ( [ <. W , X >. ] .~ .+ [ <. Y , Z >. ] .~ ) = [ <. K , L >. ] .~ ) |
||
| ecovdi.7 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( M e. S /\ N e. S ) ) |
||
| ecovdi.8 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( W e. S /\ X e. S ) ) |
||
| ecovdi.9 | |- ( ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) -> ( Y e. S /\ Z e. S ) ) |
||
| ecovdi.10 | |- H = K |
||
| ecovdi.11 | |- J = L |
||
| Assertion | ecovdi | |- ( ( A e. D /\ B e. D /\ C e. D ) -> ( A .x. ( B .+ C ) ) = ( ( A .x. B ) .+ ( A .x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovdi.1 | |- D = ( ( S X. S ) /. .~ ) |
|
| 2 | ecovdi.2 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. M , N >. ] .~ ) |
|
| 3 | ecovdi.3 | |- ( ( ( x e. S /\ y e. S ) /\ ( M e. S /\ N e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. M , N >. ] .~ ) = [ <. H , J >. ] .~ ) |
|
| 4 | ecovdi.4 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) = [ <. W , X >. ] .~ ) |
|
| 5 | ecovdi.5 | |- ( ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) = [ <. Y , Z >. ] .~ ) |
|
| 6 | ecovdi.6 | |- ( ( ( W e. S /\ X e. S ) /\ ( Y e. S /\ Z e. S ) ) -> ( [ <. W , X >. ] .~ .+ [ <. Y , Z >. ] .~ ) = [ <. K , L >. ] .~ ) |
|
| 7 | ecovdi.7 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( M e. S /\ N e. S ) ) |
|
| 8 | ecovdi.8 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( W e. S /\ X e. S ) ) |
|
| 9 | ecovdi.9 | |- ( ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) -> ( Y e. S /\ Z e. S ) ) |
|
| 10 | ecovdi.10 | |- H = K |
|
| 11 | ecovdi.11 | |- J = L |
|
| 12 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) |
|
| 13 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) = ( A .x. [ <. z , w >. ] .~ ) ) |
|
| 14 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) = ( A .x. [ <. v , u >. ] .~ ) ) |
|
| 15 | 13 14 | oveq12d | |- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) = ( ( A .x. [ <. z , w >. ] .~ ) .+ ( A .x. [ <. v , u >. ] .~ ) ) ) |
| 16 | 12 15 | eqeq12d | |- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) <-> ( A .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( ( A .x. [ <. z , w >. ] .~ ) .+ ( A .x. [ <. v , u >. ] .~ ) ) ) ) |
| 17 | oveq1 | |- ( [ <. z , w >. ] .~ = B -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = ( B .+ [ <. v , u >. ] .~ ) ) |
|
| 18 | 17 | oveq2d | |- ( [ <. z , w >. ] .~ = B -> ( A .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .x. ( B .+ [ <. v , u >. ] .~ ) ) ) |
| 19 | oveq2 | |- ( [ <. z , w >. ] .~ = B -> ( A .x. [ <. z , w >. ] .~ ) = ( A .x. B ) ) |
|
| 20 | 19 | oveq1d | |- ( [ <. z , w >. ] .~ = B -> ( ( A .x. [ <. z , w >. ] .~ ) .+ ( A .x. [ <. v , u >. ] .~ ) ) = ( ( A .x. B ) .+ ( A .x. [ <. v , u >. ] .~ ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( [ <. z , w >. ] .~ = B -> ( ( A .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( ( A .x. [ <. z , w >. ] .~ ) .+ ( A .x. [ <. v , u >. ] .~ ) ) <-> ( A .x. ( B .+ [ <. v , u >. ] .~ ) ) = ( ( A .x. B ) .+ ( A .x. [ <. v , u >. ] .~ ) ) ) ) |
| 22 | oveq2 | |- ( [ <. v , u >. ] .~ = C -> ( B .+ [ <. v , u >. ] .~ ) = ( B .+ C ) ) |
|
| 23 | 22 | oveq2d | |- ( [ <. v , u >. ] .~ = C -> ( A .x. ( B .+ [ <. v , u >. ] .~ ) ) = ( A .x. ( B .+ C ) ) ) |
| 24 | oveq2 | |- ( [ <. v , u >. ] .~ = C -> ( A .x. [ <. v , u >. ] .~ ) = ( A .x. C ) ) |
|
| 25 | 24 | oveq2d | |- ( [ <. v , u >. ] .~ = C -> ( ( A .x. B ) .+ ( A .x. [ <. v , u >. ] .~ ) ) = ( ( A .x. B ) .+ ( A .x. C ) ) ) |
| 26 | 23 25 | eqeq12d | |- ( [ <. v , u >. ] .~ = C -> ( ( A .x. ( B .+ [ <. v , u >. ] .~ ) ) = ( ( A .x. B ) .+ ( A .x. [ <. v , u >. ] .~ ) ) <-> ( A .x. ( B .+ C ) ) = ( ( A .x. B ) .+ ( A .x. C ) ) ) ) |
| 27 | opeq12 | |- ( ( H = K /\ J = L ) -> <. H , J >. = <. K , L >. ) |
|
| 28 | 27 | eceq1d | |- ( ( H = K /\ J = L ) -> [ <. H , J >. ] .~ = [ <. K , L >. ] .~ ) |
| 29 | 10 11 28 | mp2an | |- [ <. H , J >. ] .~ = [ <. K , L >. ] .~ |
| 30 | 2 | oveq2d | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .x. [ <. M , N >. ] .~ ) ) |
| 31 | 30 | adantl | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .x. [ <. M , N >. ] .~ ) ) |
| 32 | 7 3 | sylan2 | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .x. [ <. M , N >. ] .~ ) = [ <. H , J >. ] .~ ) |
| 33 | 31 32 | eqtrd | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. H , J >. ] .~ ) |
| 34 | 33 | 3impb | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. H , J >. ] .~ ) |
| 35 | 4 5 | oveqan12d | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) = ( [ <. W , X >. ] .~ .+ [ <. Y , Z >. ] .~ ) ) |
| 36 | 8 9 6 | syl2an | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. W , X >. ] .~ .+ [ <. Y , Z >. ] .~ ) = [ <. K , L >. ] .~ ) |
| 37 | 35 36 | eqtrd | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( ( x e. S /\ y e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) = [ <. K , L >. ] .~ ) |
| 38 | 37 | 3impdi | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) = [ <. K , L >. ] .~ ) |
| 39 | 29 34 38 | 3eqtr4a | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .x. ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( ( [ <. x , y >. ] .~ .x. [ <. z , w >. ] .~ ) .+ ( [ <. x , y >. ] .~ .x. [ <. v , u >. ] .~ ) ) ) |
| 40 | 1 16 21 26 39 | 3ecoptocl | |- ( ( A e. D /\ B e. D /\ C e. D ) -> ( A .x. ( B .+ C ) ) = ( ( A .x. B ) .+ ( A .x. C ) ) ) |