This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that ( R |X. S ) -cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020) (Revised by Peter Mazsa, 21-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjecxrn | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = (/) <-> ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecxrn | |- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |
|
| 2 | ecxrn | |- ( B e. W -> [ B ] ( R |X. S ) = { <. y , z >. | ( B R y /\ B S z ) } ) |
|
| 3 | 1 2 | ineqan12d | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = ( { <. y , z >. | ( A R y /\ A S z ) } i^i { <. y , z >. | ( B R y /\ B S z ) } ) ) |
| 4 | inopab | |- ( { <. y , z >. | ( A R y /\ A S z ) } i^i { <. y , z >. | ( B R y /\ B S z ) } ) = { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } |
|
| 5 | 3 4 | eqtrdi | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } ) |
| 6 | an4 | |- ( ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) <-> ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) |
|
| 7 | 6 | opabbii | |- { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } = { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } |
| 8 | 5 7 | eqtrdi | |- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } ) |
| 9 | 8 | neeq1d | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } =/= (/) ) ) |
| 10 | opabn0 | |- ( { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } =/= (/) <-> E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) |
|
| 11 | 9 10 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) ) |
| 12 | exdistrv | |- ( E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) |
|
| 13 | 11 12 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) ) |
| 14 | ecinn0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. y ( A R y /\ B R y ) ) ) |
|
| 15 | ecinn0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] S i^i [ B ] S ) =/= (/) <-> E. z ( A S z /\ B S z ) ) ) |
|
| 16 | 14 15 | anbi12d | |- ( ( A e. V /\ B e. W ) -> ( ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) ) |
| 17 | 13 16 | bitr4d | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) ) ) |
| 18 | neanior | |- ( ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) <-> -. ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) |
|
| 19 | 17 18 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> -. ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) ) |
| 20 | 19 | necon4abid | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = (/) <-> ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) ) |