This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem biorfd

Description: A wff is equivalent to its disjunction with falsehood, deduction form. (Contributed by Peter Mazsa, 22-Aug-2023)

Ref Expression
Hypothesis biorfd.1
|- ( ph -> -. ps )
Assertion biorfd
|- ( ph -> ( ch <-> ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 biorfd.1
 |-  ( ph -> -. ps )
2 biorf
 |-  ( -. ps -> ( ch <-> ( ps \/ ch ) ) )
3 1 2 syl
 |-  ( ph -> ( ch <-> ( ps \/ ch ) ) )