This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn . (Contributed by Peter Mazsa, 12-Jul-2020) (Revised by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjecxrncnvep | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( A i^i B ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjecxrn | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] `' _E i^i [ B ] `' _E ) = (/) ) ) ) |
|
| 2 | orcom | |- ( ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] `' _E i^i [ B ] `' _E ) = (/) ) <-> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |
|
| 3 | 1 2 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |
| 4 | disjeccnvep | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) <-> ( A i^i B ) = (/) ) ) |
|
| 5 | 4 | orbi1d | |- ( ( A e. V /\ B e. W ) -> ( ( ( [ A ] `' _E i^i [ B ] `' _E ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) <-> ( ( A i^i B ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |
| 6 | 3 5 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. `' _E ) i^i [ B ] ( R |X. `' _E ) ) = (/) <-> ( ( A i^i B ) = (/) \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) ) |