This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ( R |X. S ) -coset of A . (Contributed by Peter Mazsa, 18-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrn | |- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecxrn | |- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> E. y E. z ( x = <. y , z >. /\ A R y /\ A S z ) ) ) |
|
| 2 | 3anass | |- ( ( x = <. y , z >. /\ A R y /\ A S z ) <-> ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
|
| 3 | 2 | 2exbii | |- ( E. y E. z ( x = <. y , z >. /\ A R y /\ A S z ) <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
| 4 | 1 3 | bitrdi | |- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) ) |
| 5 | elopab | |- ( x e. { <. y , z >. | ( A R y /\ A S z ) } <-> E. y E. z ( x = <. y , z >. /\ ( A R y /\ A S z ) ) ) |
|
| 6 | 4 5 | bitr4di | |- ( A e. V -> ( x e. [ A ] ( R |X. S ) <-> x e. { <. y , z >. | ( A R y /\ A S z ) } ) ) |
| 7 | 6 | eqrdv | |- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |