This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of B have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecinn0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. x ( A R x /\ B R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecin0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) = (/) <-> A. x ( A R x -> -. B R x ) ) ) |
|
| 2 | 1 | necon3abid | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> -. A. x ( A R x -> -. B R x ) ) ) |
| 3 | notnotb | |- ( B R x <-> -. -. B R x ) |
|
| 4 | 3 | anbi2i | |- ( ( A R x /\ B R x ) <-> ( A R x /\ -. -. B R x ) ) |
| 5 | 4 | exbii | |- ( E. x ( A R x /\ B R x ) <-> E. x ( A R x /\ -. -. B R x ) ) |
| 6 | exanali | |- ( E. x ( A R x /\ -. -. B R x ) <-> -. A. x ( A R x -> -. B R x ) ) |
|
| 7 | 5 6 | bitri | |- ( E. x ( A R x /\ B R x ) <-> -. A. x ( A R x -> -. B R x ) ) |
| 8 | 2 7 | bitr4di | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. x ( A R x /\ B R x ) ) ) |