This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmp.1 | |- X = U. J |
|
| Assertion | cmpcov | |- ( ( J e. Comp /\ S C_ J /\ X = U. S ) -> E. s e. ( ~P S i^i Fin ) X = U. s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmp.1 | |- X = U. J |
|
| 2 | unieq | |- ( r = S -> U. r = U. S ) |
|
| 3 | 2 | eqeq2d | |- ( r = S -> ( X = U. r <-> X = U. S ) ) |
| 4 | pweq | |- ( r = S -> ~P r = ~P S ) |
|
| 5 | 4 | ineq1d | |- ( r = S -> ( ~P r i^i Fin ) = ( ~P S i^i Fin ) ) |
| 6 | 5 | rexeqdv | |- ( r = S -> ( E. s e. ( ~P r i^i Fin ) X = U. s <-> E. s e. ( ~P S i^i Fin ) X = U. s ) ) |
| 7 | 3 6 | imbi12d | |- ( r = S -> ( ( X = U. r -> E. s e. ( ~P r i^i Fin ) X = U. s ) <-> ( X = U. S -> E. s e. ( ~P S i^i Fin ) X = U. s ) ) ) |
| 8 | 1 | iscmp | |- ( J e. Comp <-> ( J e. Top /\ A. r e. ~P J ( X = U. r -> E. s e. ( ~P r i^i Fin ) X = U. s ) ) ) |
| 9 | 8 | simprbi | |- ( J e. Comp -> A. r e. ~P J ( X = U. r -> E. s e. ( ~P r i^i Fin ) X = U. s ) ) |
| 10 | 9 | adantr | |- ( ( J e. Comp /\ S C_ J ) -> A. r e. ~P J ( X = U. r -> E. s e. ( ~P r i^i Fin ) X = U. s ) ) |
| 11 | ssexg | |- ( ( S C_ J /\ J e. Comp ) -> S e. _V ) |
|
| 12 | 11 | ancoms | |- ( ( J e. Comp /\ S C_ J ) -> S e. _V ) |
| 13 | simpr | |- ( ( J e. Comp /\ S C_ J ) -> S C_ J ) |
|
| 14 | 12 13 | elpwd | |- ( ( J e. Comp /\ S C_ J ) -> S e. ~P J ) |
| 15 | 7 10 14 | rspcdva | |- ( ( J e. Comp /\ S C_ J ) -> ( X = U. S -> E. s e. ( ~P S i^i Fin ) X = U. s ) ) |
| 16 | 15 | 3impia | |- ( ( J e. Comp /\ S C_ J /\ X = U. S ) -> E. s e. ( ~P S i^i Fin ) X = U. s ) |