This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the set of nonnegative integers as the disjoint (see nn0disj ) union of the first N + 1 values and the rest. (Contributed by AV, 8-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0split | |- ( N e. NN0 -> NN0 = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 1 | a1i | |- ( N e. NN0 -> NN0 = ( ZZ>= ` 0 ) ) |
| 3 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 4 | 3 1 | eleqtrdi | |- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` 0 ) ) |
| 5 | uzsplit | |- ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( N e. NN0 -> ( ZZ>= ` 0 ) = ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 7 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 8 | pncan1 | |- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
|
| 9 | 7 8 | syl | |- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 10 | 9 | oveq2d | |- ( N e. NN0 -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 11 | 10 | uneq1d | |- ( N e. NN0 -> ( ( 0 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 12 | 2 6 11 | 3eqtrd | |- ( N e. NN0 -> NN0 = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |