This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for diag2f1o . (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1o.l | |- L = ( C DiagFunc D ) |
|
| diag2f1o.a | |- A = ( Base ` C ) |
||
| diag2f1o.h | |- H = ( Hom ` C ) |
||
| diag2f1o.x | |- ( ph -> X e. A ) |
||
| diag2f1o.y | |- ( ph -> Y e. A ) |
||
| diag2f1o.n | |- N = ( D Nat C ) |
||
| diag2f1o.d | |- ( ph -> D e. TermCat ) |
||
| diag2f1olem.m | |- ( ph -> M e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
||
| diag2f1olem.b | |- B = ( Base ` D ) |
||
| diag2f1olem.z | |- ( ph -> Z e. B ) |
||
| diag2f1olem.f | |- F = ( M ` Z ) |
||
| Assertion | diag2f1olem | |- ( ph -> ( F e. ( X H Y ) /\ M = ( ( X ( 2nd ` L ) Y ) ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1o.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2f1o.a | |- A = ( Base ` C ) |
|
| 3 | diag2f1o.h | |- H = ( Hom ` C ) |
|
| 4 | diag2f1o.x | |- ( ph -> X e. A ) |
|
| 5 | diag2f1o.y | |- ( ph -> Y e. A ) |
|
| 6 | diag2f1o.n | |- N = ( D Nat C ) |
|
| 7 | diag2f1o.d | |- ( ph -> D e. TermCat ) |
|
| 8 | diag2f1olem.m | |- ( ph -> M e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
|
| 9 | diag2f1olem.b | |- B = ( Base ` D ) |
|
| 10 | diag2f1olem.z | |- ( ph -> Z e. B ) |
|
| 11 | diag2f1olem.f | |- F = ( M ` Z ) |
|
| 12 | 6 8 | nat1st2nd | |- ( ph -> M e. ( <. ( 1st ` ( ( 1st ` L ) ` X ) ) , ( 2nd ` ( ( 1st ` L ) ` X ) ) >. N <. ( 1st ` ( ( 1st ` L ) ` Y ) ) , ( 2nd ` ( ( 1st ` L ) ` Y ) ) >. ) ) |
| 13 | 6 12 9 3 10 | natcl | |- ( ph -> ( M ` Z ) e. ( ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) H ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) ) ) |
| 14 | 6 12 | natrcl2 | |- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) ( D Func C ) ( 2nd ` ( ( 1st ` L ) ` X ) ) ) |
| 15 | 14 | funcrcl3 | |- ( ph -> C e. Cat ) |
| 16 | 7 | termccd | |- ( ph -> D e. Cat ) |
| 17 | eqid | |- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
|
| 18 | 1 15 16 2 4 17 9 10 | diag11 | |- ( ph -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) = X ) |
| 19 | eqid | |- ( ( 1st ` L ) ` Y ) = ( ( 1st ` L ) ` Y ) |
|
| 20 | 1 15 16 2 5 19 9 10 | diag11 | |- ( ph -> ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) = Y ) |
| 21 | 18 20 | oveq12d | |- ( ph -> ( ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` Z ) H ( ( 1st ` ( ( 1st ` L ) ` Y ) ) ` Z ) ) = ( X H Y ) ) |
| 22 | 13 21 | eleqtrd | |- ( ph -> ( M ` Z ) e. ( X H Y ) ) |
| 23 | 11 22 | eqeltrid | |- ( ph -> F e. ( X H Y ) ) |
| 24 | 7 6 8 9 10 11 | termcnatval | |- ( ph -> M = { <. Z , F >. } ) |
| 25 | 1 2 9 3 15 16 4 5 23 | diag2 | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| 26 | 7 9 10 | termcbas2 | |- ( ph -> B = { Z } ) |
| 27 | 26 | xpeq1d | |- ( ph -> ( B X. { F } ) = ( { Z } X. { F } ) ) |
| 28 | xpsng | |- ( ( Z e. B /\ F e. ( X H Y ) ) -> ( { Z } X. { F } ) = { <. Z , F >. } ) |
|
| 29 | 10 23 28 | syl2anc | |- ( ph -> ( { Z } X. { F } ) = { <. Z , F >. } ) |
| 30 | 25 27 29 | 3eqtrd | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = { <. Z , F >. } ) |
| 31 | 24 30 | eqtr4d | |- ( ph -> M = ( ( X ( 2nd ` L ) Y ) ` F ) ) |
| 32 | 23 31 | jca | |- ( ph -> ( F e. ( X H Y ) /\ M = ( ( X ( 2nd ` L ) Y ) ` F ) ) ) |