This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| termcbasmo.x | |- ( ph -> X e. B ) |
||
| Assertion | termcbas2 | |- ( ph -> B = { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | termcbasmo.x | |- ( ph -> X e. B ) |
|
| 4 | 1 2 | termcbas | |- ( ph -> E. x B = { x } ) |
| 5 | simpr | |- ( ( ph /\ B = { x } ) -> B = { x } ) |
|
| 6 | 3 | adantr | |- ( ( ph /\ B = { x } ) -> X e. B ) |
| 7 | 6 5 | eleqtrd | |- ( ( ph /\ B = { x } ) -> X e. { x } ) |
| 8 | elsni | |- ( X e. { x } -> X = x ) |
|
| 9 | 8 | sneqd | |- ( X e. { x } -> { X } = { x } ) |
| 10 | 7 9 | syl | |- ( ( ph /\ B = { x } ) -> { X } = { x } ) |
| 11 | 5 10 | eqtr4d | |- ( ( ph /\ B = { x } ) -> B = { X } ) |
| 12 | 4 11 | exlimddv | |- ( ph -> B = { X } ) |