This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If D is terminal, the morphism part of a diagonal functor is bijective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1o.l | |- L = ( C DiagFunc D ) |
|
| diag2f1o.a | |- A = ( Base ` C ) |
||
| diag2f1o.h | |- H = ( Hom ` C ) |
||
| diag2f1o.x | |- ( ph -> X e. A ) |
||
| diag2f1o.y | |- ( ph -> Y e. A ) |
||
| diag2f1o.n | |- N = ( D Nat C ) |
||
| diag2f1o.d | |- ( ph -> D e. TermCat ) |
||
| diag2f1o.c | |- ( ph -> C e. Cat ) |
||
| Assertion | diag2f1o | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1o.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2f1o.a | |- A = ( Base ` C ) |
|
| 3 | diag2f1o.h | |- H = ( Hom ` C ) |
|
| 4 | diag2f1o.x | |- ( ph -> X e. A ) |
|
| 5 | diag2f1o.y | |- ( ph -> Y e. A ) |
|
| 6 | diag2f1o.n | |- N = ( D Nat C ) |
|
| 7 | diag2f1o.d | |- ( ph -> D e. TermCat ) |
|
| 8 | diag2f1o.c | |- ( ph -> C e. Cat ) |
|
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | 7 | termccd | |- ( ph -> D e. Cat ) |
| 11 | 9 | istermc2 | |- ( D e. TermCat <-> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) |
| 12 | 7 11 | sylib | |- ( ph -> ( D e. ThinCat /\ E! z z e. ( Base ` D ) ) ) |
| 13 | 12 | simprd | |- ( ph -> E! z z e. ( Base ` D ) ) |
| 14 | euex | |- ( E! z z e. ( Base ` D ) -> E. z z e. ( Base ` D ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> E. z z e. ( Base ` D ) ) |
| 16 | n0 | |- ( ( Base ` D ) =/= (/) <-> E. z z e. ( Base ` D ) ) |
|
| 17 | 15 16 | sylibr | |- ( ph -> ( Base ` D ) =/= (/) ) |
| 18 | 1 2 9 3 8 10 4 5 17 6 | diag2f1 | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 19 | f1f | |- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 21 | 7 9 | termcbas | |- ( ph -> E. z ( Base ` D ) = { z } ) |
| 22 | 21 | adantr | |- ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) -> E. z ( Base ` D ) = { z } ) |
| 23 | fveq2 | |- ( f = ( m ` z ) -> ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) |
|
| 24 | 23 | eqeq2d | |- ( f = ( m ` z ) -> ( m = ( ( X ( 2nd ` L ) Y ) ` f ) <-> m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) ) |
| 25 | 4 | ad2antrr | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> X e. A ) |
| 26 | 5 | ad2antrr | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> Y e. A ) |
| 27 | 7 | ad2antrr | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> D e. TermCat ) |
| 28 | simplr | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
|
| 29 | vsnid | |- z e. { z } |
|
| 30 | simpr | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( Base ` D ) = { z } ) |
|
| 31 | 29 30 | eleqtrrid | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> z e. ( Base ` D ) ) |
| 32 | eqid | |- ( m ` z ) = ( m ` z ) |
|
| 33 | 1 2 3 25 26 6 27 28 9 31 32 | diag2f1olem | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( ( m ` z ) e. ( X H Y ) /\ m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) ) |
| 34 | 33 | simpld | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> ( m ` z ) e. ( X H Y ) ) |
| 35 | 33 | simprd | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> m = ( ( X ( 2nd ` L ) Y ) ` ( m ` z ) ) ) |
| 36 | 24 34 35 | rspcedvdw | |- ( ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) /\ ( Base ` D ) = { z } ) -> E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 37 | 22 36 | exlimddv | |- ( ( ph /\ m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) -> E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 38 | 37 | ralrimiva | |- ( ph -> A. m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) |
| 39 | dffo3 | |- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ A. m e. ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) E. f e. ( X H Y ) m = ( ( X ( 2nd ` L ) Y ) ` f ) ) ) |
|
| 40 | 20 38 39 | sylanbrc | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 41 | df-f1o | |- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ ( X ( 2nd ` L ) Y ) : ( X H Y ) -onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) ) |
|
| 42 | 18 40 41 | sylanbrc | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-onto-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |