This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for diag2f1o . (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1o.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag2f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag2f1o.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| diag2f1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag2f1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag2f1o.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | ||
| diag2f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| diag2f1olem.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) | ||
| diag2f1olem.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag2f1olem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| diag2f1olem.f | ⊢ 𝐹 = ( 𝑀 ‘ 𝑍 ) | ||
| Assertion | diag2f1olem | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑀 = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1o.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag2f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | diag2f1o.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | diag2f1o.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 5 | diag2f1o.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 6 | diag2f1o.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | |
| 7 | diag2f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 8 | diag2f1olem.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) | |
| 9 | diag2f1olem.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 10 | diag2f1olem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 11 | diag2f1olem.f | ⊢ 𝐹 = ( 𝑀 ‘ 𝑍 ) | |
| 12 | 6 8 | nat1st2nd | ⊢ ( 𝜑 → 𝑀 ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) 〉 𝑁 〈 ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) 〉 ) ) |
| 13 | 6 12 9 3 10 | natcl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑍 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑍 ) 𝐻 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ‘ 𝑍 ) ) ) |
| 14 | 6 12 | natrcl2 | ⊢ ( 𝜑 → ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 15 | 14 | funcrcl3 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 16 | 7 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 17 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 18 | 1 15 16 2 4 17 9 10 | diag11 | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑍 ) = 𝑋 ) |
| 19 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) | |
| 20 | 1 15 16 2 5 19 9 10 | diag11 | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ‘ 𝑍 ) = 𝑌 ) |
| 21 | 18 20 | oveq12d | ⊢ ( 𝜑 → ( ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ‘ 𝑍 ) 𝐻 ( ( 1st ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ‘ 𝑍 ) ) = ( 𝑋 𝐻 𝑌 ) ) |
| 22 | 13 21 | eleqtrd | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑍 ) ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 23 | 11 22 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 24 | 7 6 8 9 10 11 | termcnatval | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑍 , 𝐹 〉 } ) |
| 25 | 1 2 9 3 15 16 4 5 23 | diag2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
| 26 | 7 9 10 | termcbas2 | ⊢ ( 𝜑 → 𝐵 = { 𝑍 } ) |
| 27 | 26 | xpeq1d | ⊢ ( 𝜑 → ( 𝐵 × { 𝐹 } ) = ( { 𝑍 } × { 𝐹 } ) ) |
| 28 | xpsng | ⊢ ( ( 𝑍 ∈ 𝐵 ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( { 𝑍 } × { 𝐹 } ) = { 〈 𝑍 , 𝐹 〉 } ) | |
| 29 | 10 23 28 | syl2anc | ⊢ ( 𝜑 → ( { 𝑍 } × { 𝐹 } ) = { 〈 𝑍 , 𝐹 〉 } ) |
| 30 | 25 27 29 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = { 〈 𝑍 , 𝐹 〉 } ) |
| 31 | 24 30 | eqtr4d | ⊢ ( 𝜑 → 𝑀 = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) ) |
| 32 | 23 31 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑀 = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) ) ) |