This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1.l | |- L = ( C DiagFunc D ) |
|
| diag1.c | |- ( ph -> C e. Cat ) |
||
| diag1.d | |- ( ph -> D e. Cat ) |
||
| diag1.a | |- A = ( Base ` C ) |
||
| diag1.x | |- ( ph -> X e. A ) |
||
| diag1.k | |- K = ( ( 1st ` L ) ` X ) |
||
| diag1.b | |- B = ( Base ` D ) |
||
| diag1.j | |- J = ( Hom ` D ) |
||
| diag1.i | |- .1. = ( Id ` C ) |
||
| Assertion | diag1a | |- ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag1.c | |- ( ph -> C e. Cat ) |
|
| 3 | diag1.d | |- ( ph -> D e. Cat ) |
|
| 4 | diag1.a | |- A = ( Base ` C ) |
|
| 5 | diag1.x | |- ( ph -> X e. A ) |
|
| 6 | diag1.k | |- K = ( ( 1st ` L ) ` X ) |
|
| 7 | diag1.b | |- B = ( Base ` D ) |
|
| 8 | diag1.j | |- J = ( Hom ` D ) |
|
| 9 | diag1.i | |- .1. = ( Id ` C ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | diag1 | |- ( ph -> K = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |
| 11 | fconstmpt | |- ( B X. { X } ) = ( y e. B |-> X ) |
|
| 12 | fconstmpt | |- ( ( y J z ) X. { ( .1. ` X ) } ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) |
|
| 13 | 12 | a1i | |- ( ( y e. B /\ z e. B ) -> ( ( y J z ) X. { ( .1. ` X ) } ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 14 | 13 | mpoeq3ia | |- ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 15 | 11 14 | opeq12i | |- <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) >. = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. |
| 16 | 10 15 | eqtr4di | |- ( ph -> K = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y J z ) X. { ( .1. ` X ) } ) ) >. ) |