This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dflidl2rng.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| dflidl2rng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| dflidl2rng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dflidl2rng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflidl2rng.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | dflidl2rng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | dflidl2rng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | simpll | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Rng ) | |
| 5 | simpr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 6 | subg0cl | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 9 | 4 5 8 | 3jca | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ) |
| 10 | 6 2 3 1 | rnglidlmcl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 11 | 9 10 | sylan | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 12 | 11 | ralrimivva | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) |
| 13 | 2 | subgss | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
| 15 | 7 | ne0d | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝐼 ≠ ∅ ) |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ≠ ∅ ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 18 | 17 | subgcl | ⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 19 | 18 | ad5ant245 | ⊢ ( ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 21 | 20 | ex | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 22 | 21 | ralimdvva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) |
| 24 | 1 2 17 3 | islidl | ⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐼 ) ) |
| 25 | 14 16 23 24 | syl3anbrc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ 𝑈 ) |
| 26 | 12 25 | impbida | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ) |