This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | giccyg | |- ( G ~=g H -> ( G e. CycGrp -> H e. CycGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | |- ( G ~=g H <-> ( G GrpIso H ) =/= (/) ) |
|
| 2 | n0 | |- ( ( G GrpIso H ) =/= (/) <-> E. f f e. ( G GrpIso H ) ) |
|
| 3 | gimghm | |- ( f e. ( G GrpIso H ) -> f e. ( G GrpHom H ) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 6 | 4 5 | gimf1o | |- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -1-1-onto-> ( Base ` H ) ) |
| 7 | f1ofo | |- ( f : ( Base ` G ) -1-1-onto-> ( Base ` H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
|
| 8 | 6 7 | syl | |- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
| 9 | 4 5 | ghmcyg | |- ( ( f e. ( G GrpHom H ) /\ f : ( Base ` G ) -onto-> ( Base ` H ) ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 10 | 3 8 9 | syl2anc | |- ( f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 11 | 10 | exlimiv | |- ( E. f f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 12 | 2 11 | sylbi | |- ( ( G GrpIso H ) =/= (/) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 13 | 1 12 | sylbi | |- ( G ~=g H -> ( G e. CycGrp -> H e. CycGrp ) ) |