This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for an operation to be commutative. Lemma for cycsubmcom and cygabl . Formerly part of proof for cygabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cyccom.c | |- ( ph -> A. c e. C E. x e. Z c = ( x .x. A ) ) |
|
| cyccom.d | |- ( ph -> A. m e. Z A. n e. Z ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
||
| cyccom.x | |- ( ph -> X e. C ) |
||
| cyccom.y | |- ( ph -> Y e. C ) |
||
| cyccom.z | |- ( ph -> Z C_ CC ) |
||
| Assertion | cyccom | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyccom.c | |- ( ph -> A. c e. C E. x e. Z c = ( x .x. A ) ) |
|
| 2 | cyccom.d | |- ( ph -> A. m e. Z A. n e. Z ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
|
| 3 | cyccom.x | |- ( ph -> X e. C ) |
|
| 4 | cyccom.y | |- ( ph -> Y e. C ) |
|
| 5 | cyccom.z | |- ( ph -> Z C_ CC ) |
|
| 6 | eqeq1 | |- ( c = Y -> ( c = ( x .x. A ) <-> Y = ( x .x. A ) ) ) |
|
| 7 | 6 | rexbidv | |- ( c = Y -> ( E. x e. Z c = ( x .x. A ) <-> E. x e. Z Y = ( x .x. A ) ) ) |
| 8 | 7 | rspccv | |- ( A. c e. C E. x e. Z c = ( x .x. A ) -> ( Y e. C -> E. x e. Z Y = ( x .x. A ) ) ) |
| 9 | 1 8 | syl | |- ( ph -> ( Y e. C -> E. x e. Z Y = ( x .x. A ) ) ) |
| 10 | eqeq1 | |- ( c = X -> ( c = ( x .x. A ) <-> X = ( x .x. A ) ) ) |
|
| 11 | 10 | rexbidv | |- ( c = X -> ( E. x e. Z c = ( x .x. A ) <-> E. x e. Z X = ( x .x. A ) ) ) |
| 12 | 11 | rspccv | |- ( A. c e. C E. x e. Z c = ( x .x. A ) -> ( X e. C -> E. x e. Z X = ( x .x. A ) ) ) |
| 13 | 1 12 | syl | |- ( ph -> ( X e. C -> E. x e. Z X = ( x .x. A ) ) ) |
| 14 | oveq1 | |- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
|
| 15 | 14 | eqeq2d | |- ( x = y -> ( Y = ( x .x. A ) <-> Y = ( y .x. A ) ) ) |
| 16 | 15 | cbvrexvw | |- ( E. x e. Z Y = ( x .x. A ) <-> E. y e. Z Y = ( y .x. A ) ) |
| 17 | reeanv | |- ( E. x e. Z E. y e. Z ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) <-> ( E. x e. Z X = ( x .x. A ) /\ E. y e. Z Y = ( y .x. A ) ) ) |
|
| 18 | 5 | sseld | |- ( ph -> ( x e. Z -> x e. CC ) ) |
| 19 | 18 | com12 | |- ( x e. Z -> ( ph -> x e. CC ) ) |
| 20 | 19 | adantr | |- ( ( x e. Z /\ y e. Z ) -> ( ph -> x e. CC ) ) |
| 21 | 20 | impcom | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> x e. CC ) |
| 22 | 5 | sseld | |- ( ph -> ( y e. Z -> y e. CC ) ) |
| 23 | 22 | a1d | |- ( ph -> ( x e. Z -> ( y e. Z -> y e. CC ) ) ) |
| 24 | 23 | imp32 | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> y e. CC ) |
| 25 | 21 24 | addcomd | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( x + y ) = ( y + x ) ) |
| 26 | 25 | oveq1d | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( ( x + y ) .x. A ) = ( ( y + x ) .x. A ) ) |
| 27 | simpr | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( x e. Z /\ y e. Z ) ) |
|
| 28 | 2 | adantr | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> A. m e. Z A. n e. Z ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) |
| 29 | oveq1 | |- ( m = x -> ( m + n ) = ( x + n ) ) |
|
| 30 | 29 | oveq1d | |- ( m = x -> ( ( m + n ) .x. A ) = ( ( x + n ) .x. A ) ) |
| 31 | oveq1 | |- ( m = x -> ( m .x. A ) = ( x .x. A ) ) |
|
| 32 | 31 | oveq1d | |- ( m = x -> ( ( m .x. A ) .+ ( n .x. A ) ) = ( ( x .x. A ) .+ ( n .x. A ) ) ) |
| 33 | 30 32 | eqeq12d | |- ( m = x -> ( ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) <-> ( ( x + n ) .x. A ) = ( ( x .x. A ) .+ ( n .x. A ) ) ) ) |
| 34 | oveq2 | |- ( n = y -> ( x + n ) = ( x + y ) ) |
|
| 35 | 34 | oveq1d | |- ( n = y -> ( ( x + n ) .x. A ) = ( ( x + y ) .x. A ) ) |
| 36 | oveq1 | |- ( n = y -> ( n .x. A ) = ( y .x. A ) ) |
|
| 37 | 36 | oveq2d | |- ( n = y -> ( ( x .x. A ) .+ ( n .x. A ) ) = ( ( x .x. A ) .+ ( y .x. A ) ) ) |
| 38 | 35 37 | eqeq12d | |- ( n = y -> ( ( ( x + n ) .x. A ) = ( ( x .x. A ) .+ ( n .x. A ) ) <-> ( ( x + y ) .x. A ) = ( ( x .x. A ) .+ ( y .x. A ) ) ) ) |
| 39 | 33 38 | rspc2va | |- ( ( ( x e. Z /\ y e. Z ) /\ A. m e. Z A. n e. Z ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) -> ( ( x + y ) .x. A ) = ( ( x .x. A ) .+ ( y .x. A ) ) ) |
| 40 | 27 28 39 | syl2anc | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( ( x + y ) .x. A ) = ( ( x .x. A ) .+ ( y .x. A ) ) ) |
| 41 | 27 | ancomd | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( y e. Z /\ x e. Z ) ) |
| 42 | oveq1 | |- ( m = y -> ( m + n ) = ( y + n ) ) |
|
| 43 | 42 | oveq1d | |- ( m = y -> ( ( m + n ) .x. A ) = ( ( y + n ) .x. A ) ) |
| 44 | oveq1 | |- ( m = y -> ( m .x. A ) = ( y .x. A ) ) |
|
| 45 | 44 | oveq1d | |- ( m = y -> ( ( m .x. A ) .+ ( n .x. A ) ) = ( ( y .x. A ) .+ ( n .x. A ) ) ) |
| 46 | 43 45 | eqeq12d | |- ( m = y -> ( ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) <-> ( ( y + n ) .x. A ) = ( ( y .x. A ) .+ ( n .x. A ) ) ) ) |
| 47 | oveq2 | |- ( n = x -> ( y + n ) = ( y + x ) ) |
|
| 48 | 47 | oveq1d | |- ( n = x -> ( ( y + n ) .x. A ) = ( ( y + x ) .x. A ) ) |
| 49 | oveq1 | |- ( n = x -> ( n .x. A ) = ( x .x. A ) ) |
|
| 50 | 49 | oveq2d | |- ( n = x -> ( ( y .x. A ) .+ ( n .x. A ) ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
| 51 | 48 50 | eqeq12d | |- ( n = x -> ( ( ( y + n ) .x. A ) = ( ( y .x. A ) .+ ( n .x. A ) ) <-> ( ( y + x ) .x. A ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) ) |
| 52 | 46 51 | rspc2va | |- ( ( ( y e. Z /\ x e. Z ) /\ A. m e. Z A. n e. Z ( ( m + n ) .x. A ) = ( ( m .x. A ) .+ ( n .x. A ) ) ) -> ( ( y + x ) .x. A ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
| 53 | 41 28 52 | syl2anc | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( ( y + x ) .x. A ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
| 54 | 26 40 53 | 3eqtr3d | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( ( x .x. A ) .+ ( y .x. A ) ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
| 55 | oveq12 | |- ( ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) -> ( X .+ Y ) = ( ( x .x. A ) .+ ( y .x. A ) ) ) |
|
| 56 | oveq12 | |- ( ( Y = ( y .x. A ) /\ X = ( x .x. A ) ) -> ( Y .+ X ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
|
| 57 | 56 | ancoms | |- ( ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) -> ( Y .+ X ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) |
| 58 | 55 57 | eqeq12d | |- ( ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) -> ( ( X .+ Y ) = ( Y .+ X ) <-> ( ( x .x. A ) .+ ( y .x. A ) ) = ( ( y .x. A ) .+ ( x .x. A ) ) ) ) |
| 59 | 54 58 | syl5ibrcom | |- ( ( ph /\ ( x e. Z /\ y e. Z ) ) -> ( ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) ) |
| 60 | 59 | rexlimdvva | |- ( ph -> ( E. x e. Z E. y e. Z ( X = ( x .x. A ) /\ Y = ( y .x. A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) ) |
| 61 | 17 60 | biimtrrid | |- ( ph -> ( ( E. x e. Z X = ( x .x. A ) /\ E. y e. Z Y = ( y .x. A ) ) -> ( X .+ Y ) = ( Y .+ X ) ) ) |
| 62 | 61 | expd | |- ( ph -> ( E. x e. Z X = ( x .x. A ) -> ( E. y e. Z Y = ( y .x. A ) -> ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| 63 | 16 62 | syl7bi | |- ( ph -> ( E. x e. Z X = ( x .x. A ) -> ( E. x e. Z Y = ( x .x. A ) -> ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| 64 | 13 63 | syld | |- ( ph -> ( X e. C -> ( E. x e. Z Y = ( x .x. A ) -> ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| 65 | 64 | com23 | |- ( ph -> ( E. x e. Z Y = ( x .x. A ) -> ( X e. C -> ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| 66 | 9 65 | syld | |- ( ph -> ( Y e. C -> ( X e. C -> ( X .+ Y ) = ( Y .+ X ) ) ) ) |
| 67 | 4 3 66 | mp2d | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |