This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A contains A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | |- B = ( Base ` G ) |
|
| cycsubm.t | |- .x. = ( .g ` G ) |
||
| cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
||
| cycsubm.c | |- C = ran F |
||
| Assertion | cycsubmcl | |- ( A e. B -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | |- B = ( Base ` G ) |
|
| 2 | cycsubm.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
|
| 4 | cycsubm.c | |- C = ran F |
|
| 5 | 1nn0 | |- 1 e. NN0 |
|
| 6 | 5 | a1i | |- ( A e. B -> 1 e. NN0 ) |
| 7 | oveq1 | |- ( i = 1 -> ( i .x. A ) = ( 1 .x. A ) ) |
|
| 8 | 7 | eqeq2d | |- ( i = 1 -> ( A = ( i .x. A ) <-> A = ( 1 .x. A ) ) ) |
| 9 | 8 | adantl | |- ( ( A e. B /\ i = 1 ) -> ( A = ( i .x. A ) <-> A = ( 1 .x. A ) ) ) |
| 10 | 1 2 | mulg1 | |- ( A e. B -> ( 1 .x. A ) = A ) |
| 11 | 10 | eqcomd | |- ( A e. B -> A = ( 1 .x. A ) ) |
| 12 | 6 9 11 | rspcedvd | |- ( A e. B -> E. i e. NN0 A = ( i .x. A ) ) |
| 13 | 1 2 3 4 | cycsubmel | |- ( A e. C <-> E. i e. NN0 A = ( i .x. A ) ) |
| 14 | 12 13 | sylibr | |- ( A e. B -> A e. C ) |