This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of an element of the set of nonnegative integer powers of an element A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | |- B = ( Base ` G ) |
|
| cycsubm.t | |- .x. = ( .g ` G ) |
||
| cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
||
| cycsubm.c | |- C = ran F |
||
| Assertion | cycsubmel | |- ( X e. C <-> E. i e. NN0 X = ( i .x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | |- B = ( Base ` G ) |
|
| 2 | cycsubm.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
|
| 4 | cycsubm.c | |- C = ran F |
|
| 5 | 4 | eleq2i | |- ( X e. C <-> X e. ran F ) |
| 6 | ovex | |- ( x .x. A ) e. _V |
|
| 7 | 6 3 | fnmpti | |- F Fn NN0 |
| 8 | fvelrnb | |- ( F Fn NN0 -> ( X e. ran F <-> E. i e. NN0 ( F ` i ) = X ) ) |
|
| 9 | 7 8 | ax-mp | |- ( X e. ran F <-> E. i e. NN0 ( F ` i ) = X ) |
| 10 | oveq1 | |- ( x = i -> ( x .x. A ) = ( i .x. A ) ) |
|
| 11 | ovex | |- ( i .x. A ) e. _V |
|
| 12 | 10 3 11 | fvmpt | |- ( i e. NN0 -> ( F ` i ) = ( i .x. A ) ) |
| 13 | 12 | eqeq1d | |- ( i e. NN0 -> ( ( F ` i ) = X <-> ( i .x. A ) = X ) ) |
| 14 | eqcom | |- ( ( i .x. A ) = X <-> X = ( i .x. A ) ) |
|
| 15 | 13 14 | bitrdi | |- ( i e. NN0 -> ( ( F ` i ) = X <-> X = ( i .x. A ) ) ) |
| 16 | 15 | rexbiia | |- ( E. i e. NN0 ( F ` i ) = X <-> E. i e. NN0 X = ( i .x. A ) ) |
| 17 | 5 9 16 | 3bitri | |- ( X e. C <-> E. i e. NN0 X = ( i .x. A ) ) |