This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of integer powers of an element A of a group forms a subgroup containing A , called the cyclic group generated by the element A . (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg.x | |- X = ( Base ` G ) |
|
| cycsubg.t | |- .x. = ( .g ` G ) |
||
| cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | cycsubgcl | |- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg.x | |- X = ( Base ` G ) |
|
| 2 | cycsubg.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 4 | 1 2 | mulgcl | |- ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) |
| 5 | 4 | 3expa | |- ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) |
| 6 | 5 | an32s | |- ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
| 7 | 6 3 | fmptd | |- ( ( G e. Grp /\ A e. X ) -> F : ZZ --> X ) |
| 8 | 7 | frnd | |- ( ( G e. Grp /\ A e. X ) -> ran F C_ X ) |
| 9 | 7 | ffnd | |- ( ( G e. Grp /\ A e. X ) -> F Fn ZZ ) |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | fnfvelrn | |- ( ( F Fn ZZ /\ 1 e. ZZ ) -> ( F ` 1 ) e. ran F ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) e. ran F ) |
| 13 | 12 | ne0d | |- ( ( G e. Grp /\ A e. X ) -> ran F =/= (/) ) |
| 14 | df-3an | |- ( ( m e. ZZ /\ n e. ZZ /\ A e. X ) <-> ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) |
|
| 15 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 16 | 1 2 15 | mulgdir | |- ( ( G e. Grp /\ ( m e. ZZ /\ n e. ZZ /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
| 17 | 14 16 | sylan2br | |- ( ( G e. Grp /\ ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
| 18 | 17 | anass1rs | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
| 19 | zaddcl | |- ( ( m e. ZZ /\ n e. ZZ ) -> ( m + n ) e. ZZ ) |
|
| 20 | 19 | adantl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( m + n ) e. ZZ ) |
| 21 | oveq1 | |- ( x = ( m + n ) -> ( x .x. A ) = ( ( m + n ) .x. A ) ) |
|
| 22 | ovex | |- ( ( m + n ) .x. A ) e. _V |
|
| 23 | 21 3 22 | fvmpt | |- ( ( m + n ) e. ZZ -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) |
| 24 | 20 23 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) |
| 25 | oveq1 | |- ( x = m -> ( x .x. A ) = ( m .x. A ) ) |
|
| 26 | ovex | |- ( m .x. A ) e. _V |
|
| 27 | 25 3 26 | fvmpt | |- ( m e. ZZ -> ( F ` m ) = ( m .x. A ) ) |
| 28 | 27 | ad2antrl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` m ) = ( m .x. A ) ) |
| 29 | oveq1 | |- ( x = n -> ( x .x. A ) = ( n .x. A ) ) |
|
| 30 | ovex | |- ( n .x. A ) e. _V |
|
| 31 | 29 3 30 | fvmpt | |- ( n e. ZZ -> ( F ` n ) = ( n .x. A ) ) |
| 32 | 31 | ad2antll | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` n ) = ( n .x. A ) ) |
| 33 | 28 32 | oveq12d | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
| 34 | 18 24 33 | 3eqtr4d | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) |
| 35 | fnfvelrn | |- ( ( F Fn ZZ /\ ( m + n ) e. ZZ ) -> ( F ` ( m + n ) ) e. ran F ) |
|
| 36 | 9 19 35 | syl2an | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) e. ran F ) |
| 37 | 34 36 | eqeltrrd | |- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
| 38 | 37 | anassrs | |- ( ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) /\ n e. ZZ ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
| 39 | 38 | ralrimiva | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
| 40 | oveq2 | |- ( v = ( F ` n ) -> ( ( F ` m ) ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) |
|
| 41 | 40 | eleq1d | |- ( v = ( F ` n ) -> ( ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
| 42 | 41 | ralrn | |- ( F Fn ZZ -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
| 43 | 9 42 | syl | |- ( ( G e. Grp /\ A e. X ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
| 44 | 43 | adantr | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
| 45 | 39 44 | mpbird | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) |
| 46 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 47 | 1 2 46 | mulgneg | |- ( ( G e. Grp /\ m e. ZZ /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
| 48 | 47 | 3expa | |- ( ( ( G e. Grp /\ m e. ZZ ) /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
| 49 | 48 | an32s | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
| 50 | znegcl | |- ( m e. ZZ -> -u m e. ZZ ) |
|
| 51 | 50 | adantl | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> -u m e. ZZ ) |
| 52 | oveq1 | |- ( x = -u m -> ( x .x. A ) = ( -u m .x. A ) ) |
|
| 53 | ovex | |- ( -u m .x. A ) e. _V |
|
| 54 | 52 3 53 | fvmpt | |- ( -u m e. ZZ -> ( F ` -u m ) = ( -u m .x. A ) ) |
| 55 | 51 54 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( -u m .x. A ) ) |
| 56 | 27 | adantl | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` m ) = ( m .x. A ) ) |
| 57 | 56 | fveq2d | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
| 58 | 49 55 57 | 3eqtr4d | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( ( invg ` G ) ` ( F ` m ) ) ) |
| 59 | fnfvelrn | |- ( ( F Fn ZZ /\ -u m e. ZZ ) -> ( F ` -u m ) e. ran F ) |
|
| 60 | 9 50 59 | syl2an | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) e. ran F ) |
| 61 | 58 60 | eqeltrrd | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) |
| 62 | 45 61 | jca | |- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
| 63 | 62 | ralrimiva | |- ( ( G e. Grp /\ A e. X ) -> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
| 64 | oveq1 | |- ( u = ( F ` m ) -> ( u ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) v ) ) |
|
| 65 | 64 | eleq1d | |- ( u = ( F ` m ) -> ( ( u ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) |
| 66 | 65 | ralbidv | |- ( u = ( F ` m ) -> ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F <-> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) |
| 67 | fveq2 | |- ( u = ( F ` m ) -> ( ( invg ` G ) ` u ) = ( ( invg ` G ) ` ( F ` m ) ) ) |
|
| 68 | 67 | eleq1d | |- ( u = ( F ` m ) -> ( ( ( invg ` G ) ` u ) e. ran F <-> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
| 69 | 66 68 | anbi12d | |- ( u = ( F ` m ) -> ( ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
| 70 | 69 | ralrn | |- ( F Fn ZZ -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
| 71 | 9 70 | syl | |- ( ( G e. Grp /\ A e. X ) -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
| 72 | 63 71 | mpbird | |- ( ( G e. Grp /\ A e. X ) -> A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) |
| 73 | 1 15 46 | issubg2 | |- ( G e. Grp -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) |
| 74 | 73 | adantr | |- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) |
| 75 | 8 13 72 74 | mpbir3and | |- ( ( G e. Grp /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |
| 76 | oveq1 | |- ( x = 1 -> ( x .x. A ) = ( 1 .x. A ) ) |
|
| 77 | ovex | |- ( 1 .x. A ) e. _V |
|
| 78 | 76 3 77 | fvmpt | |- ( 1 e. ZZ -> ( F ` 1 ) = ( 1 .x. A ) ) |
| 79 | 10 78 | ax-mp | |- ( F ` 1 ) = ( 1 .x. A ) |
| 80 | 1 2 | mulg1 | |- ( A e. X -> ( 1 .x. A ) = A ) |
| 81 | 80 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( 1 .x. A ) = A ) |
| 82 | 79 81 | eqtrid | |- ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) = A ) |
| 83 | 82 12 | eqeltrrd | |- ( ( G e. Grp /\ A e. X ) -> A e. ran F ) |
| 84 | 75 83 | jca | |- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |