This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg.x | |- X = ( Base ` G ) |
|
| cycsubg.t | |- .x. = ( .g ` G ) |
||
| cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | cycsubgss | |- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg.x | |- X = ( Base ` G ) |
|
| 2 | cycsubg.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 4 | 2 | subgmulgcl | |- ( ( S e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. S ) -> ( x .x. A ) e. S ) |
| 5 | 4 | 3expa | |- ( ( ( S e. ( SubGrp ` G ) /\ x e. ZZ ) /\ A e. S ) -> ( x .x. A ) e. S ) |
| 6 | 5 | an32s | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. S ) /\ x e. ZZ ) -> ( x .x. A ) e. S ) |
| 7 | 6 3 | fmptd | |- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> F : ZZ --> S ) |
| 8 | 7 | frnd | |- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S ) |