This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cxp | |- ( A e. CC -> ( 1 ^c A ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ax-1ne0 | |- 1 =/= 0 |
|
| 3 | cxpef | |- ( ( 1 e. CC /\ 1 =/= 0 /\ A e. CC ) -> ( 1 ^c A ) = ( exp ` ( A x. ( log ` 1 ) ) ) ) |
|
| 4 | 1 2 3 | mp3an12 | |- ( A e. CC -> ( 1 ^c A ) = ( exp ` ( A x. ( log ` 1 ) ) ) ) |
| 5 | log1 | |- ( log ` 1 ) = 0 |
|
| 6 | 5 | oveq2i | |- ( A x. ( log ` 1 ) ) = ( A x. 0 ) |
| 7 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 8 | 6 7 | eqtrid | |- ( A e. CC -> ( A x. ( log ` 1 ) ) = 0 ) |
| 9 | 8 | fveq2d | |- ( A e. CC -> ( exp ` ( A x. ( log ` 1 ) ) ) = ( exp ` 0 ) ) |
| 10 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 11 | 9 10 | eqtrdi | |- ( A e. CC -> ( exp ` ( A x. ( log ` 1 ) ) ) = 1 ) |
| 12 | 4 11 | eqtrd | |- ( A e. CC -> ( 1 ^c A ) = 1 ) |