This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple3 | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c C ) <_ ( A ^c B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxplt3 | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( C e. RR /\ B e. RR ) ) -> ( C < B <-> ( A ^c B ) < ( A ^c C ) ) ) |
|
| 2 | 1 | ancom2s | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( C < B <-> ( A ^c B ) < ( A ^c C ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( -. C < B <-> -. ( A ^c B ) < ( A ^c C ) ) ) |
| 4 | lenlt | |- ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> -. C < B ) ) |
|
| 5 | 4 | adantl | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> -. C < B ) ) |
| 6 | rpcxpcl | |- ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) |
|
| 7 | 6 | ad2ant2rl | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR+ ) |
| 8 | rpcxpcl | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
|
| 9 | 8 | ad2ant2r | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR+ ) |
| 10 | rpre | |- ( ( A ^c C ) e. RR+ -> ( A ^c C ) e. RR ) |
|
| 11 | rpre | |- ( ( A ^c B ) e. RR+ -> ( A ^c B ) e. RR ) |
|
| 12 | lenlt | |- ( ( ( A ^c C ) e. RR /\ ( A ^c B ) e. RR ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( ( A ^c C ) e. RR+ /\ ( A ^c B ) e. RR+ ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) |
| 14 | 7 9 13 | syl2anc | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c C ) <_ ( A ^c B ) <-> -. ( A ^c B ) < ( A ^c C ) ) ) |
| 15 | 3 5 14 | 3bitr4d | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c C ) <_ ( A ^c B ) ) ) |