This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rplogcl | |- ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ 1 < A ) -> A e. RR ) |
|
| 2 | 0red | |- ( ( A e. RR /\ 1 < A ) -> 0 e. RR ) |
|
| 3 | 1red | |- ( ( A e. RR /\ 1 < A ) -> 1 e. RR ) |
|
| 4 | 0lt1 | |- 0 < 1 |
|
| 5 | 4 | a1i | |- ( ( A e. RR /\ 1 < A ) -> 0 < 1 ) |
| 6 | simpr | |- ( ( A e. RR /\ 1 < A ) -> 1 < A ) |
|
| 7 | 2 3 1 5 6 | lttrd | |- ( ( A e. RR /\ 1 < A ) -> 0 < A ) |
| 8 | 1 7 | elrpd | |- ( ( A e. RR /\ 1 < A ) -> A e. RR+ ) |
| 9 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 10 | 8 9 | syl | |- ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR ) |
| 11 | log1 | |- ( log ` 1 ) = 0 |
|
| 12 | 1rp | |- 1 e. RR+ |
|
| 13 | logltb | |- ( ( 1 e. RR+ /\ A e. RR+ ) -> ( 1 < A <-> ( log ` 1 ) < ( log ` A ) ) ) |
|
| 14 | 12 8 13 | sylancr | |- ( ( A e. RR /\ 1 < A ) -> ( 1 < A <-> ( log ` 1 ) < ( log ` A ) ) ) |
| 15 | 6 14 | mpbid | |- ( ( A e. RR /\ 1 < A ) -> ( log ` 1 ) < ( log ` A ) ) |
| 16 | 11 15 | eqbrtrrid | |- ( ( A e. RR /\ 1 < A ) -> 0 < ( log ` A ) ) |
| 17 | 10 16 | elrpd | |- ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR+ ) |