This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c B ) <_ ( A ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxplt | |- ( ( ( A e. RR /\ 1 < A ) /\ ( C e. RR /\ B e. RR ) ) -> ( C < B <-> ( A ^c C ) < ( A ^c B ) ) ) |
|
| 2 | 1 | ancom2s | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( C < B <-> ( A ^c C ) < ( A ^c B ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( -. C < B <-> -. ( A ^c C ) < ( A ^c B ) ) ) |
| 4 | lenlt | |- ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> -. C < B ) ) |
|
| 5 | 4 | adantl | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> -. C < B ) ) |
| 6 | simpll | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR ) |
|
| 7 | 0red | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 e. RR ) |
|
| 8 | 1red | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 e. RR ) |
|
| 9 | 0lt1 | |- 0 < 1 |
|
| 10 | 9 | a1i | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < 1 ) |
| 11 | simplr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < A ) |
|
| 12 | 7 8 6 10 11 | lttrd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 < A ) |
| 13 | 7 6 12 | ltled | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> 0 <_ A ) |
| 14 | simprl | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR ) |
|
| 15 | recxpcl | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> ( A ^c B ) e. RR ) |
|
| 16 | 6 13 14 15 | syl3anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR ) |
| 17 | simprr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR ) |
|
| 18 | recxpcl | |- ( ( A e. RR /\ 0 <_ A /\ C e. RR ) -> ( A ^c C ) e. RR ) |
|
| 19 | 6 13 17 18 | syl3anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR ) |
| 20 | 16 19 | lenltd | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c B ) <_ ( A ^c C ) <-> -. ( A ^c C ) < ( A ^c B ) ) ) |
| 21 | 3 5 20 | 3bitr4d | |- ( ( ( A e. RR /\ 1 < A ) /\ ( B e. RR /\ C e. RR ) ) -> ( B <_ C <-> ( A ^c B ) <_ ( A ^c C ) ) ) |