This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn . (Contributed by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslssbn.x | |- X = ( W |`s U ) |
|
| cmslssbn.s | |- S = ( LSubSp ` W ) |
||
| Assertion | cmslssbn | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslssbn.x | |- X = ( W |`s U ) |
|
| 2 | cmslssbn.s | |- S = ( LSubSp ` W ) |
|
| 3 | 1 2 | lssnvc | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmVec ) |
| 4 | 3 | ad2ant2rl | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. NrmVec ) |
| 5 | simprl | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. CMetSp ) |
|
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | 1 6 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 8 | 7 | ad2antll | |- ( ( W e. NrmVec /\ ( X e. CMetSp /\ U e. S ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 | 8 | eleq1d | |- ( ( W e. NrmVec /\ ( X e. CMetSp /\ U e. S ) ) -> ( ( Scalar ` W ) e. CMetSp <-> ( Scalar ` X ) e. CMetSp ) ) |
| 10 | 9 | biimpd | |- ( ( W e. NrmVec /\ ( X e. CMetSp /\ U e. S ) ) -> ( ( Scalar ` W ) e. CMetSp -> ( Scalar ` X ) e. CMetSp ) ) |
| 11 | 10 | impancom | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) -> ( ( X e. CMetSp /\ U e. S ) -> ( Scalar ` X ) e. CMetSp ) ) |
| 12 | 11 | imp | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> ( Scalar ` X ) e. CMetSp ) |
| 13 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 14 | 13 | isbn | |- ( X e. Ban <-> ( X e. NrmVec /\ X e. CMetSp /\ ( Scalar ` X ) e. CMetSp ) ) |
| 15 | 4 5 12 14 | syl3anbrc | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |