This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssbn.x | |- X = ( W |`s U ) |
|
| cssbn.s | |- S = ( LSubSp ` W ) |
||
| cssbn.d | |- D = ( ( dist ` W ) |` ( U X. U ) ) |
||
| csschl.c | |- ( Scalar ` W ) = CCfld |
||
| Assertion | csschl | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( X e. CHil /\ ( Scalar ` X ) = CCfld ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssbn.x | |- X = ( W |`s U ) |
|
| 2 | cssbn.s | |- S = ( LSubSp ` W ) |
|
| 3 | cssbn.d | |- D = ( ( dist ` W ) |` ( U X. U ) ) |
|
| 4 | csschl.c | |- ( Scalar ` W ) = CCfld |
|
| 5 | cphnvc | |- ( W e. CPreHil -> W e. NrmVec ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> W e. NrmVec ) |
| 7 | cncms | |- CCfld e. CMetSp |
|
| 8 | eleq1 | |- ( ( Scalar ` W ) = CCfld -> ( ( Scalar ` W ) e. CMetSp <-> CCfld e. CMetSp ) ) |
|
| 9 | 7 8 | mpbiri | |- ( ( Scalar ` W ) = CCfld -> ( Scalar ` W ) e. CMetSp ) |
| 10 | 4 9 | mp1i | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` W ) e. CMetSp ) |
| 11 | simp2 | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> U e. S ) |
|
| 12 | simp3 | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) |
|
| 13 | 1 2 3 | cssbn | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |
| 14 | 6 10 11 12 13 | syl31anc | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |
| 15 | 1 2 | cphssphl | |- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) |
| 16 | 14 15 | syld3an3 | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. CHil ) |
| 17 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 18 | 1 17 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 19 | 18 4 | eqtr3di | |- ( U e. S -> ( Scalar ` X ) = CCfld ) |
| 20 | 19 | 3ad2ant2 | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` X ) = CCfld ) |
| 21 | 16 20 | jca | |- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( X e. CHil /\ ( Scalar ` X ) = CCfld ) ) |