This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscms.1 | |- X = ( Base ` M ) |
|
| iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
||
| Assertion | iscms | |- ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscms.1 | |- X = ( Base ` M ) |
|
| 2 | iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
|
| 3 | fvexd | |- ( w = M -> ( Base ` w ) e. _V ) |
|
| 4 | fveq2 | |- ( w = M -> ( dist ` w ) = ( dist ` M ) ) |
|
| 5 | 4 | adantr | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( dist ` w ) = ( dist ` M ) ) |
| 6 | id | |- ( b = ( Base ` w ) -> b = ( Base ` w ) ) |
|
| 7 | fveq2 | |- ( w = M -> ( Base ` w ) = ( Base ` M ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( w = M -> ( Base ` w ) = X ) |
| 9 | 6 8 | sylan9eqr | |- ( ( w = M /\ b = ( Base ` w ) ) -> b = X ) |
| 10 | 9 | sqxpeqd | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( b X. b ) = ( X X. X ) ) |
| 11 | 5 10 | reseq12d | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 12 | 11 2 | eqtr4di | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = D ) |
| 13 | 9 | fveq2d | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( CMet ` b ) = ( CMet ` X ) ) |
| 14 | 12 13 | eleq12d | |- ( ( w = M /\ b = ( Base ` w ) ) -> ( ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) |
| 15 | 3 14 | sbcied | |- ( w = M -> ( [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) |
| 16 | df-cms | |- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
|
| 17 | 15 16 | elrab2 | |- ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) |