This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of Kreyszig p. 28. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet2.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | iscmet2 | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 3 | 1 | cmetcau | |- ( ( D e. ( CMet ` X ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) |
| 4 | 3 | ex | |- ( D e. ( CMet ` X ) -> ( f e. ( Cau ` D ) -> f e. dom ( ~~>t ` J ) ) ) |
| 5 | 4 | ssrdv | |- ( D e. ( CMet ` X ) -> ( Cau ` D ) C_ dom ( ~~>t ` J ) ) |
| 6 | 2 5 | jca | |- ( D e. ( CMet ` X ) -> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |
| 7 | ssel2 | |- ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> f e. dom ( ~~>t ` J ) ) |
|
| 8 | 7 | a1d | |- ( ( ( Cau ` D ) C_ dom ( ~~>t ` J ) /\ f e. ( Cau ` D ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 9 | 8 | ralrimiva | |- ( ( Cau ` D ) C_ dom ( ~~>t ` J ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 10 | 9 | adantl | |- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 11 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 12 | 1zzd | |- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> 1 e. ZZ ) |
|
| 13 | simpl | |- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( Met ` X ) ) |
|
| 14 | 11 1 12 13 | iscmet3 | |- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) |
| 15 | 10 14 | mpbird | |- ( ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) -> D e. ( CMet ` X ) ) |
| 16 | 6 15 | impbii | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ ( Cau ` D ) C_ dom ( ~~>t ` J ) ) ) |